
APPENDIX 6

TECHNICAL SUPPORTING DOCUMENTS

Document Set ID: 26418546 Version: 1, Version Date: 24/10/2024

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

20 September 2024

Prepared for: MCK TSV Pty Ltd Report: 50890-RP02-A

Document Set ID: 26418546 Version: 1, Version Date: 24/10/2024

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

Document Control Information

Document Title: Traffic Impact Assessment

Document Reference:50890-RP02-APrepared for:MCK TSV Pty LtdPrepared by:James GoodmanReviewed by:Luke Seeney

Project Reference: 50890

Revision History

Authorised for issue

Version	Issue Date	Purpose of Issue	Details	Name / Position	Signature
A	20 September 2024	To support development application	Original issue	Luke Seeney RPEQ 23542 Engineering Principal	Wheney

Document Set IDR264ft856460-RP02-A Version: 1, Version Date: 24/10/2024 i

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

Table of Contents

1.	Introduction	1
1.1	Project background	1
1.2	Development details	1
1.3	Applicable planning scheme	
1.4	Scope	3
1.5	Limitations	
2.	Existing conditions	4
2.1	Road network	4
2.2	Public transport	5
2.3	Active transport	6
2.4	Road crash history	7
2.5	Background traffic volumes	8
2.6	Intersection operation	10
2.7	Intersection assessment	11
3.	Traffic impact assessment	16
3.1	Traffic generation	16
3.2	Trip distribution	17
3.3	Traffic distribution	19
3.4	Assessment of development traffic impacts	20
3.5	Base case traffic volumes	20
3.6	Development traffic volumes	21
4.	Intersection analysis	22
4.1	Study area	22
4.2	Racecourse Road / Lakeside Drive	22
4.3	Racecourse Road / Lakeside Drive / Townsville Turf Club Access	23
4.4	Intersection delay	24
4.5	Road safety assessment	
5.	Proposed infrastructure upgrades	25
5.1	Mitigation measures	25
5.2	Revised traffic distribution	25
5.3	Assessment of traffic impacts	28
5.4	Design traffic volumes	29
5.5	Design case intersection analysis	31
5.6	Design case road link assessment	
6.	Response to development codes	38
7.	Conclusions	38
8.	References	38

Traffic Impact Assessment
Townsville Water Park, Beach Club and Hotel
1-105 Racecourse Road, Cluden

Figures	
Figure 1.1	Locality plan
Figure 1.2	Master plan
Figure 2.1.2	Key intersections
Figure 2.2	Public transport in proximity to site
Figure 2.3.1	Principal cycle network
Figure 2.3.2	Priority route map
Figure 2.4	Crash data
Figure 2.5	2024 background traffic volumes
Figure 2.7	SIDRA network layout
Figure 2.7.1	Existing Racecourse Road / Lakeside Drive layout
Figure 2.7.2	Existing Racecourse Road / Lakeside Drive / Townsville Turf Club Access layout
Figure 2.7.3.1	Existing Stuart Drive / Edison Street layout
Figure 2.7.3.2	Existing Stuart Drive / Edison Street SIDRA layout
Figure 3.3.1	Development distributions (%)
Figure 3.3.2	Development distributions (vehicles)
Figure 3.5	2029 – Base case traffic volumes (existing with no development)
Figure 3.6	2029 – Development case traffic volumes (existing with development)
Figure 4.1	Study area
Figure 5.2.1	2024 Redistribution traffic volumes
Figure 5.2.2.1	Post upgrades development distributions (%)
Figure 5.2.2.2	Post upgrades development distributions (vehicles)
Figure 5.4.1	2029 – Design case traffic volumes (redistributed traffic with development)
Figure 5.4.2	2039 - Design case traffic volumes (redistributed traffic with development)
Figure 5.5.1	Proposed Racecourse Road / Lakeside Drive / Lakeside Drive extended phasing
Figure 5.5.2	Proposed Lakeside Drive extended / Development Access roundabout SIDRA layout
Figure 5.5.3	Stuart Drive / Lakeside Drive extended / Edison Street roundabout SIDRA layout

Traffic Impact Assessment
Townsville Water Park, Beach Club and Hotel
1-105 Racecourse Road, Cluden

	h	00
1		125
 · u	~	

Table 1.2	Development details
Table 2.1.1	Surrounding road network
Table 2.4	Crash details
Table 2.5.1	Intersection peak periods
Table 2.5.2	Annual volume data
Table 2.6.1.1	Maximum degree of saturation for road intersections
Table 2.6.1.2	LOS criteria for road intersections using delay
Table 2.7.1	2024 SIDRA results – Racecourse Road / Lakeside Drive
Table 2.7.2	2024 SIDRA results – Racecourse Road / Lakeside Drive / Townsville Turf Club
Table 2.7.3	2024 SIDRA results – Stuart Drive / Edison Street
Table 3.1	Development traffic generation
Table 3.1	Development traffic generation (continued)
Table 3.2.1	Development traffic splits
Table 4.2	Lakeside Drive SIDRA results – year of opening (2029) – Base vs. Development
Table 4.3	Turf Club Access SIDRA results – year of opening (2029) – Base vs. Development
Table 4.4	Aggregate-intersection-delay-impact 'with development'
Table 4.5	Road safety assessment
Table 5.2.1	Background traffic redistribution assumptions
Table 5.5.1.1	Racecourse Road design case SIDRA results – year of opening (2029)
Table 5.5.1.2	Racecourse Road design case SIDRA results – 10-year design horizon (2039)
Table 5.5.2.1	Development access design case SIDRA results – year of opening (2029)
Table 5.5.2.2	Development access design case SIDRA results – 10-year design horizon (2039)
Table 5.5.3.1	Stuart Drive design case SIDRA results – year of opening (2029)
Table 5.5.3.2	Stuart Drive design case SIDRA results – 10-year design horizon (2039)
Table 5.6.1	Midblock capacity assessment – background traffic
Table 5.6.2	Midblock capacity assessment – background plus development traffic

Appendices Appendix A

1.1	
Appendix A	Plans of development
Appendix B	Intersection count data
Appendix C	TMR 2023 road link count data
Appendix D	SIDRA outputs (existing)
Appendix E	SIDRA outputs (development)
Appendix F	Civil engineering drawings
Appendix G	SIDRA outputs (design)
Appendix H	Development code responses

Document Set IDR2641:85660-RP02-A Version: 1, Version Date: 24/10/2024

1. Introduction

1.1 Project background

Geleon has been engaged by MCK TSV Pty Ltd (the **Applicant**) to prepare a Traffic Impact Assessment (**TIA**) to accompany a Development Application (**DA**) to establish the Townsville Water Park, Beach Club and Hotel at 1-105 Racecourse Road, Cluden (Lot 1 SP101275 and Lot 2 RP748152) (**Figure 1.1**). The existing 52.301-hectare site is currently occupied by the Cluden Park Racecourse in the eastern portion, with this application related to the western portion of the site that is currently vacant.

Figure 1.1 Locality plan

1.2 Development details

The proposed development encompasses several land uses across three precincts, including food and drink outlet, shop, hotel, multiple dwelling, showroom, outdoor sport and recreation, short-term accommodation and function facility land uses. Specifically, the outdoor sport and recreation land use aims to establish a waterpark on the subject site. Within Precinct 3, the short-term accommodation, food and drink outlet, and function facility will be consolidated within a single hotel establishment.

It is understood that all three precincts will be constructed concurrently and will be operational within five years (2029).

Access to and from the three precincts will be facilitated by internal private roads connecting to the current Townsville Turf Club Access via a new four-leg, single-lane roundabout. Prior to commencement, the Townsville Turf Club Access will extend as part of Lakeside Drive, connecting Racecourse Road to Stuart Drive. Direct property access to the new extension of Lakeside Drive from the proposed land uses will be prohibited.

Details of the proposed development are provided in **Table 1.2**, with the site plan shown in **Figure 1.2**. Other relevant plans of development have been included in **Appendix A**.

Table 1.2 Development details

ID	Land Use	Land Use Quantity		
Precinct 1	-			
1	Food and drink outlet (fast food)	560	m ² GFA	
2	Shop / food and drink outlet (restaurant / café)	1,590	m ² GFA	
3	Hotel (Tavern)	1,215	m² GFA	
Precinct 2				
4	Multiple dwelling	230	Units	
Or				
4	Showroom	5,500	m² GFA	
Precinct 3				
5	Outdoor sport and recreation (Waterpark)	371	parking spaces	
6	Short-term accommodation	209	Rooms	
7	Food and drink outlet (restaurant / café)	204	m ² GFA	
8	Function facility	1,523	m² GFA	

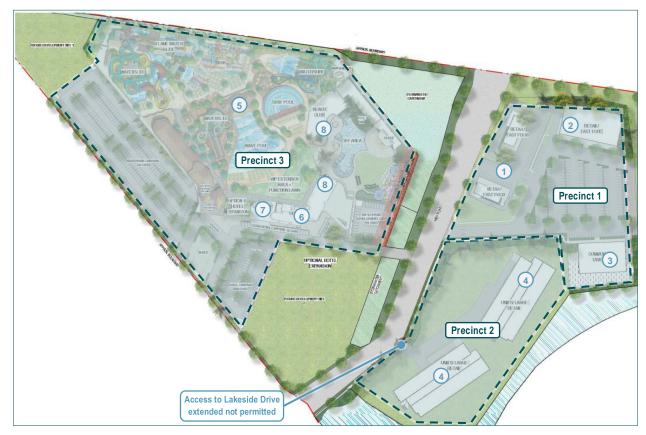


Figure 1.2 Master plan

1.3 Applicable planning scheme

The proposed development site falls under the jurisdiction of the City of Townsville (**Council**) and is governed by the *Townsville City Plan (Version 2022/02)*.

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

1.4 Scope

The scope of the assessment presented in this report is as follows:

- assessment of public transport, pedestrian and cycling accessibility to / from site
- calculation of the anticipated development traffic generation and its impact to the external road network, and
- completion of Council and State development code templates to accompany the development application.

1.5 Limitations

While the calculations and analysis undertaken as part of the assessment and documented in this report are considered appropriate for the assessment, the following limitations should be noted:

- large events at the Cluden Park Racecourse have been not considered as these events would comprise event specific traffic management plans
- background traffic count data utilised in the assessment has been based on traffic counts which may not be
 100% representative of the typical traffic volumes on the external road network, and
- background growth rates adopted for this study have been based on historical background traffic growth. While the use of these growth rates to establish traffic forecasts is considered acceptable for the short term (10-20 years), estimates become less reliable the further out they are calculated. This is due to potential changes in traffic conditions as a result of changes to the wider road network and different shifts in traffic generators and attractors and route choices. As such, the assessment contained in this report should be revisited should any significant changes in volumes at the intersections or adjacent road links be identified.

Document Set IDR264ft856460-RP02-A Version: 1, Version Date: 24/10/2024

2. Existing conditions

2.1 Road network

2.1.1 Key roads

The hierarchy of the road network surrounding the development is shown in **Table 2.1.1**.

Table 2.1.1 Surrounding road network

Road name	Jurisdiction	No. of lanes	Speed limit	Median divided	Road hierarchy	Footpath / bicycle lanes	On-street parking
Bruce Highway ('Racecourse Road')	TMR ¹	4	80km/h	Yes	Highway	No footpaths / bicycle lanes on both sides	Nil
Townsville Connection Road ('Stuart Drive')	TMR ¹	2	70km/h	No	Highway	Footpath / off road bicycle path on southern side	Nil near subject site
Abbott Street Connection Road ('Lakeside Drive')	TMR ¹	2-4	60km/h	Partly	Trafficable Road	Partial footpaths both sides / bicycle lanes on both sides	Nil
Edison Street	Council	2	60km/h	No	Trafficable Road	Footpaths both sides / no bicycle provisions	Informal both sides
Townsville Turf Club Access	Private road	2	N/A	No	Private	Footpath on western side / bicycle lanes at intersection	Nil
Notes: 1. Department of Transport and Main Roads							

2.1.2 Key intersections

In addition to the surrounding road network, there are three key intersections in proximity to the subject site which development generated traffic will utilise once Lakeside Drive is extended from Racecourse Road to Stuart Drive. These intersections are located as shown in **Figure 2.1.2** and are identified as:

- 1. Racecourse Road / Lakeside Drive signalised intersection
- 2. Racecourse Road / Lakeside Drive / Townsville Turf Club Access signalised intersection
- 3. Stuart Drive / Edison Street three-leg single lane roundabout.

Figure 2.1.2 Key intersections

2.2 Public transport

The development site is located within walking distance (<400m) of approximately 14 public transport stops (Stop ID's 890300, 890313, 890314, 890315, 890299, 890386, 890387, 890298, 890681, 890388, 890389, 890297, 890683, 890707).

Three bus stops are located directly adjacent the development site, known as 'Stuart Drive at Watt Street' (Stop ID: 890297), 'Stuart Drive at Edison Street' (Stop ID: 890681) and Stuart Drive at Marconi Street (Stop ID: 890298). These stops are serviced by two public bus routes, known as '207', '209', except for 'Stuart Drive at Edison Street' which is only serviced by '207'.

The closest Lakeside Drive bus stop known as Lakeside Drive near D'Arcy Drive hail 'n' ride (Stop ID: 890707) is serviced by one public bus route, '207'.

Locations of all stops within proximity to the development site are provided in Figure 2.2.

Figure 2.2 Public transport in proximity to site

2.3 Active transport

The subject site is located adjacent to Racecourse Road and Stuart Drive which forms part of TMR's *North Queensland Principal Cycle Network* and includes on-road and off-road bicycle provisions, respectively. The principal cycle network surrounding the proposed development and route priorities are illustrated in **Figure 2.3.1** and **Figure 2.3.2**.

Figure 2.3.1 Principal cycle network

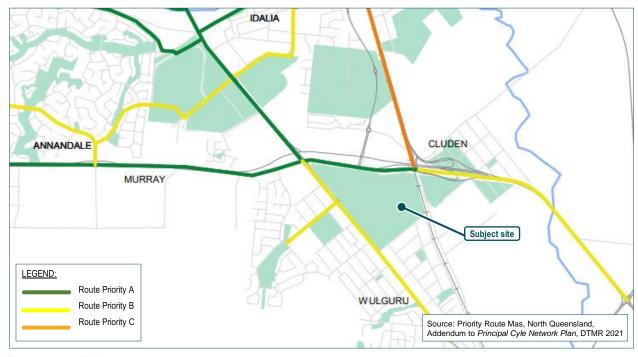


Figure 2.3.2 Priority route map

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

2.4 Road crash history

Crash data near the key intersections identified in **Section 2.1.2** was sourced from TMR and is summarised in **Table 2.4**. Data for the period between 2018 and 2024 can be categorised as follows:

- fatal crashes from 1 January 2018 to 30 April 2024, and
- non-fatal casualty (hospitalisation, medical treatment, and minor injury) crashes from 1 January 2018 to 30 November 2023.

Analysis of the crash data indicates that 12 crashes have occurred in proximity to the key intersections identified in **Section 2.1.2** (**Figure 2.4**). Three crashes have occurred at the Racecourse Road / Lakeside Drive / Townsville Turf Club Access intersection, two relating to vehicle adjacent approach crashes and the other relating to a vehicle travelling off the carriageway. Therefore, no crash clusters are present at this intersection.

Five crashes resulting in injury have occurred at the Racecourse Road / Lakeside Drive intersection with four relating to vehicle adjacent approach: through – through related crashes. It is therefore apparent that the Racecourse Road / Lakeside Drive intersection consists of a crash cluster.

Three crashes have occurred at the Stuart Drive / Edison Street roundabout with all three relating to rear end related crashes. However, the three rear end related crashes occur on each of the intersection approaches (one crash per intersection approach). Therefore, no crash clusters are considered present at this intersection.

Table 2.4 Crash details

Crash No.	Crash year	Road	DCA code	Crash DCA group description	Crash severity
1	2020	Lakeside Drive	101	Vehicles adjacent approach: through-through	Medical treatment
2	2019	Lakeside Drive	708	Off path-straight: mounts traffic island	Minor injury
3	2023	Lakeside Drive	101	Vehicles adjacent approach: through-through	Hospitalisation
4	2023	Lakeside Drive	101	Vehicles adjacent approach: through-through	Medical treatment
5	2023	Lakeside Drive	308	Vehicles same direction: right turn side swipe	Hospitalisation
6	2023	Lakeside Drive	101	Vehicles adjacent approach: through-through	Hospitalisation
7	2023	Edison Street	302	Vehicles same direction: left rear	Minor injury
8	2018	Lakeside Drive	101	Vehicles adjacent approach: through-through	Hospitalisation
9	2018	Lakeside Drive	101	Vehicles adjacent approach: through-through	Hospitalisation
10	2021	Stuart Drive	301	Vehicles same direction: rear end	Minor injury
11	2021	Lakeside Drive	301	Vehicles same direction: rear end	Medical treatment
12	2022	Stuart Drive	301	Vehicles same direction: rear end	Hospitalisation

7

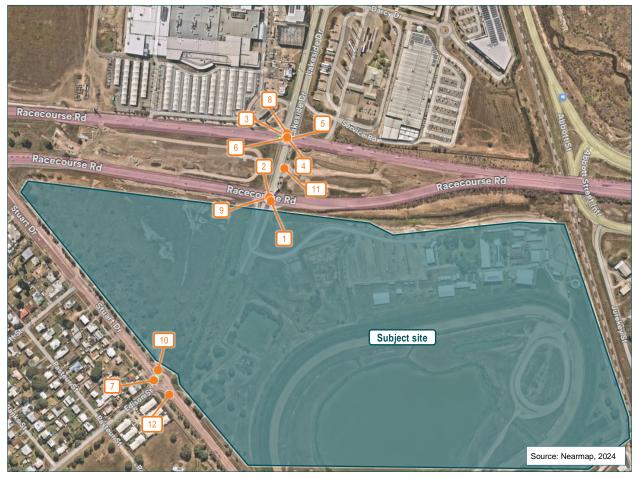


Figure 2.4 Crash data

2.5 Background traffic volumes

Traffic count data for the key intersections identified in **Section 2.1.2** was sourced from an intersection count conducted by Northern Consulting in May 2024 for a Thursday and Saturday of the same week (**Appendix B**). Typical peak periods for the intersections, as sourced from the provided count data, are presented in **Table 2.5.1**. Existing 2024 peak hour intersection traffic volumes are shown in **Figure 2.5**.

Table 2.5.1 Intersection peak periods

Intersection	AM peak	PM peak	Weekend peak
Racecourse Road / Lakeside Drive	7:45am - 8:45am	4:00pm - 5:00pm	11:15am - 12:15pm
Racecourse Road / Lakeside Drive / Townsville Turf Club Access	7:45am - 8:45am	4:15pm – 5:15pm	12:30pm – 1:30pm
Stuart Drive / Edison Street	7:45am - 8:45am	4:15pm – 5:15pm	11:00am - 12:00pm

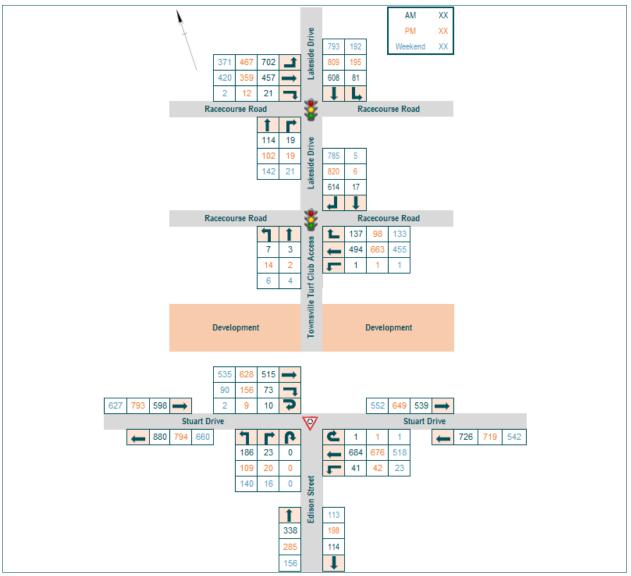


Figure 2.5 2024 background traffic volumes

In addition to the intersection count, annual volume data was sourced from TMR's *Open Data Portal* – 2022 traffic census data¹ for Racecourse Road and Lakeside Drive as detailed in **Table 2.5.2**. In addition, 2023 annual volume data for the below sites have been provided from TMR and are included as **Appendix C**. The 2023 annual volume data does not include growth rate data and therefore the 2022 10-year growth rates have been considered for this traffic impact assessment.

Table 2.5.2 Annual volume data

Road link	Count year	TAR Site ID	Count location	Travel Direction	AADT	10-year growth rate
		92204	200m west of Cluden Park Racecourse	With gazettal	6,877 vpd	-
Bruce Highway ('Racecourse Road')	2022			Against gazettal	7,147 vpd	-
(1140000410011044)				Both directions	14,024 vpd	0.7%
Abbott Street	2022	160693	Between Lakeland Drive and Oononba Road	With gazettal	5,469 vpd	-
Connection Road				Against gazettal	5,007 vpd	-
('Lakeside Drive')				Both directions	10,476 vpd	-
	2022 02101		Stuart Drive 100m west of Edison Street	With gazettal	7,543 vpd	2.99%
Townsville Connection Road ('Stuart Drive')		92191		Against gazettal	7,740 vpd	2.88%
(State Birro)				Both directions	15,283 vpd	2.93%

¹ Department of Transport and Main Roads (13 December 2022), Open Data Portal – 2022 traffic census data.

Document Set IDR264185640-RP02-A Version: 1, Version Date: 24/10/2024 Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

2.6 Intersection operation

Using the available background traffic data, an assessment of the existing operational performance of the intersections identified in **Section 2.1.2** has been undertaken using SIDRA 9.1 intersection analysis software.

2.6.1 Intersection performance criteria

Principal criteria against which intersection performance is assessed are:

- the intersection degree of saturation (DOS), which is the ratio of maximum movement demand volume to capacity at an intersection
- level of service (LOS) expressed as a function of the movement delay, and
- queue lengths on intersection legs.

For the purposes of this assessment, criteria outlined in Austroads *Guide to Traffic Management Part 3: Transport Studies* and *Analysis Methods (2020)* have been adopted. Austroads suggests that for intersections, LOS and DOS are the criteria upon which performance is measured. **Table 2.6.1.1** shows the maximum degree of saturation² for the various intersection types.

Table 2.6.1.1 Maximum degree of saturation for road intersections

Intersection type	Maximum degree of saturation
signalised intersection	0.9
roundabout	0.85
unsignalised intersection	0.8

While DOS is an important measure of the capacity and operational performance of an intersection, several other factors are also important, in particular, intersection and individual movement level of service (LOS) and delay, as well as the impact of identified vehicle queue lengths. While delay is calculated for all types of intersections, it is most critical for priority or sign-controlled intersections, where excessive delays to vehicle movements exiting minor side roads can lead to motorists accepting smaller gaps in the opposing traffic flows thereby increasing safety conflicts.

The LOS and delay criteria adopted for this assessment have been taken from the SIDRA Intersection 9.1 *User Guide*³ and for ease of reference are summarised in **Table 2.6.1.2**.

For this assessment, where an intersection has been analysed and the outcome from that analysis indicates a level of service of LOS C or better based on the average delay per vehicle, then that intersection has been deemed to perform in a satisfactory or better manner. Delays producing a LOS D or LOS E have been deemed to be excessive and are considered to increase the potential for both unsafe operation and capacity constraints of the intersection.

Table 2.6.1.2 LOS criteria for road intersections using delay

Level of service	Average delay per vehicle (d) in seconds							
Level of Service	Signalised intersections (SIDRA)	Roundabouts (SIDRA)	Unsignalised intersections (RTA NSW)					
А	d ≤ 10	d ≤ 10	d < 14.5					
В	10 < d ≤ 20	10 < d ≤ 20	14.5 < d <28.5					
С	20 < d ≤ 35	20 < d ≤ 35	28.5 < d < 42.5					
D	35 < d ≤ 55	35 < d ≤ 50	42.5 < d < 56.5					
Е	55 < d ≤ 80	50 < d ≤ 70	56.5 < d < 70.5					
F	80 < d	70 < d	70.5 < d					

Document Set IDR264t3540-RP02-A Version: 1, Version Date: 24/10/2024 10

² Austroads (2020), Guide to Traffic Management Part 3: Transport Studies and Analysis Methods, Sydney, s.4.2.4, p.37.

³ Akcelik & Associates Pty Ltd (December 2022), Sidra Intersection 9.1 User Guide, s.5.14.1, Table 5.14.1, Table 5.14.3, p.480-481.

2.7 Intersection assessment

As the Racecourse Road / Lakeside Drive and Racecourse Road / Lakeside Drive / Townsville Turf Club Access signalised intersections are in proximity to one another, the assessment of existing operational performance has been undertaken based on a modelled network approach (**Figure 2.7**). Based on TMR phasing data, a 120-second cycle time has been adopted for this analysis with both signalised intersections coordinated in the model.

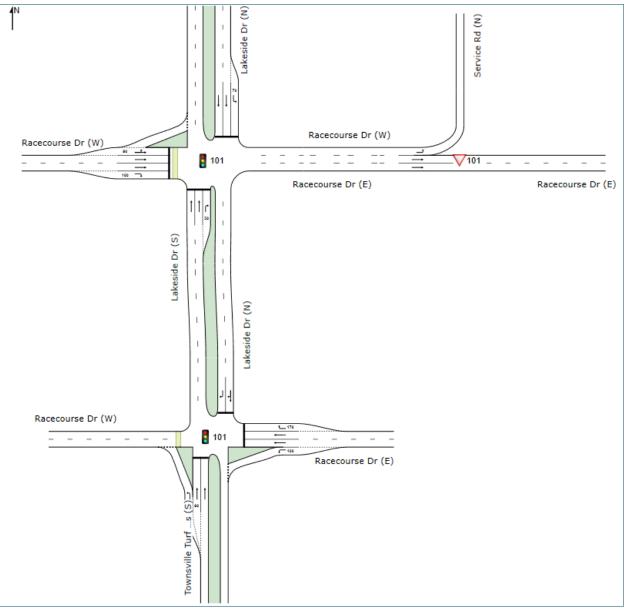


Figure 2.7 SIDRA network layout

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

2.7.1 Racecourse Road / Lakeside Drive

The existing intersection configuration is shown in **Figure 2.7.1** and the layout modelled in SIDRA is shown in **Figure 2.7.** A summary of the key performance indicators is provided in **Table 2.7.1**.

The results of the SIDRA analysis demonstrate that, under the existing conditions, the Lakeside Drive approaches of the intersection have exceeded capacity in terms of average delay, however overall, the signalised intersection still operates within acceptable key performance indicators for a signalised intersection. High delays of this nature for the minor legs of a signalised intersection are considered typical, as in most cases vehicles approaching the intersection on minor legs would wait an entire cycle before being given a green phase.

SIDRA outputs for the assessment are provided in **Appendix D**.

Figure 2.7.1 Existing Racecourse Road / Lakeside Drive layout

Table 2.7.1 2024 SIDRA results – Racecourse Road / Lakeside Drive

Approach	Degree of saturation	Average delay (s)	Level of service	95% back of queue (m)
2024 AM	·			
Lakeside Drive (S)	0.264	44.0	D	24.7
Lakeside Drive (N)	0.614	41.0	D	119.2
Racecourse Road (W)	0.575	9.3	А	66.6
2024 PM				
Lakeside Drive (S)	0.272	33.1	С	20.6
Lakeside Drive (N)	0.504	26.4	С	126.9
Racecourse Road (W)	0.431	13.5	В	73.1
2024 Weekend				
Lakeside Drive (S)	0.262	29.4	С	28.0
Lakeside Drive (N)	0.445	22.3	С	111.6
Racecourse Road (W)	0.380	17.1	В	75.1

2.7.2 Racecourse Road / Lakeside Drive / Townsville Turf Club Access

The existing intersection configuration is shown in **Figure 2.7.2** and the layout modelled in SIDRA is shown in **Figure 2.7.** A summary of the key performance indicators is provided in **Table 2.7.2**.

The results of the SIDRA analysis indicate that the existing Racecourse Road / Lakeside Drive / Townsville Turf Club Access signalised intersection operates within acceptable key performance indicators for a signalised intersection. Moderate delays were recorded for the right and through movements of the Racecourse Road eastern approach; however, these delays are not considered significant.

SIDRA outputs for the assessment are provided in **Appendix D**.

Figure 2.7.2 Existing Racecourse Road / Lakeside Drive / Townsville Turf Club Access layout

Table 2.7.2 2024 SIDRA results – Racecourse Road / Lakeside Drive / Townsville Turf Club

Approach	Degree of saturation	Average delay (s)	Level of service	95% back of queue (m)
2024 AM				
Townsville Turf Club Access (S)	0.016	22.1	С	0.9
Racecourse Road (E)	0.436	34.2	С	92.9
Lakeside Drive (N)	0.436	5.7	А	6.9
2024 PM				
Townsville Turf Club Access (S)	0.035	15.3	В	1.9
Racecourse Road (E)	0.563	35.3	D	124.6
Lakeside Drive (N)	0.560	7.1	А	24.5
2024 Weekend				
Townsville Turf Club Access (S)	0.012	26.1	С	0.8
Racecourse Road (E)	0.455	39.6	D	83.5
Lakeside Drive (N)	0.465	5.6	А	6.7

2.7.3 Stuart Drive / Edison Street

The existing intersection configuration is shown in **Figure 2.7.3.1** and the layout modelled in SIDRA is shown in **Figure 2.7.3.2**. A summary of the key performance indicators is provided in **Table 2.7.3**.

Figure 2.7.3.1 Existing Stuart Drive / Edison Street layout

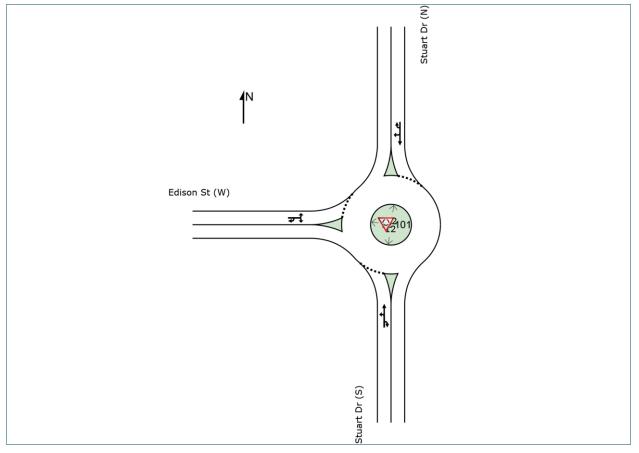


Figure 2.7.3.2 Existing Stuart Drive / Edison Street SIDRA layout

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

The results of the SIDRA analysis indicate that the existing Stuart Drive / Edison Street intersection operates within acceptable key performance indicators for a roundabout.

SIDRA outputs for the assessment are provided in **Appendix D**.

Table 2.7.3 2024 SIDRA results – Stuart Drive / Edison Street

Approach	Degree of saturation	Average delay (s)	Level of service	95% back of queue (m)
2024 AM	·	•		
Stuart Drive (S)	0.589	6.6	А	40.6
Stuart Drive (N)	0.433	6.5	А	29.5
Edison Street (W)	0.372	11.4	В	17.2
2024 PM				
Stuart Drive (S)	0.644	7.5	А	43.3
Stuart Drive (N)	0.544	6.6	А	42.3
Edison Street (W)	0.244	10.9	В	11.1
2024 Weekend				
Stuart Drive (S)	0.445	6.4	А	23.5
Stuart Drive (N)	0.429	6.3	А	26.8
Edison Street (W)	0.224	8.8	А	9.2

15

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

3. Traffic impact assessment

3.1 Traffic generation

A review of Council's *Townsville City Plan (Version 2022/02)* has not identified traffic generation rates for the existing and proposed land uses. In lieu of Council specific traffic generation rates, traffic generation rates for the development have been based on the rates provided in the RTA's *Guide to Traffic Generating Developments (GTGD)*, the updated RMS *Guide to Traffic Generating Developments – Technical Direction (TDT 2013/04)*, the Institute of Transportation Engineers (ITE) *Traffic Generation Data Trip Generation Manual (11th Edition)*, TMR's *Road Planning and Design Manual* and TMR's *Traffic Generation Data - 2006 – 2018*.

For the food and drink and function facility land uses within Precinct 3, appropriate trip generation 'discounts' have been applied as a percentage of external trips given that the development concept is a multi-purpose facility where uses will be primarily used by on site hotel guests or comprise multi-purpose trips. No discounts have been applied to the short-term accommodation component. A summary of the expected development traffic generation is shown in **Table 3.1**.

Table 3.1 Development traffic generation

ID	Land Use	Qu	antity	Peak Period	Tra	ffic Generation Rate	External trip %	Traffic Generation Volum
Prec	inct 1						<u> </u>	
				AM	30	trips per 100m ² GFA	100%	168
,	Food and drink	500	2 0.54	PM	38	trips per 100m ² GFA	100%	213
1	outlet (fast food)	560	m ² GFA	Weekend	40	trips per 100m ² GFA	100%	224
	·			Daily	370	trips per 100m ² GFA	100%	2,072
	Shop / food			AM	5	trips per 100m ² GFA	100%	80
2	and drink outlet	1 500	m² GFA	PM	5	trips per 100m ² GFA	100%	80
2	(restaurant /	1,590	m- GFA	Weekend	5	trips per 100m ² GFA	100%	80
	café)			Daily	60	trips per 100m ² GFA	100%	954
				AM	4.1	trips per 100m ² GFA ¹	100%	50
2	Hotel (Toyorn)	1 015	m² GFA	PM	8.2	trips per 100m ² GFA	100%	100
3	Hotel (Tavern)	1,215	III- GFA	Weekend	8.4	trips per 100m ² GFA	100%	103
				Daily	69	trips per 100m ² GFA	100%	839
						Sub -total	AM peak hour trips	298
						Sub -total	PM peak hour trips	393
						Sub -total Week	tend peak hour trips	407
						;	Sub -total Daily trips	3,865
rec	inct 2							
				AM	0.53	trips per unit	100%	122
4	Multiple	220	Llaita	PM	0.32	trips per unit	100%	74
+	dwelling	230	Units	Weekend	0.53	trips per unit	100%	122
				Daily	4.6	trips per unit	100%	1,058
						Or		
				AM	0.2	trips per 100m ² GFA	100%	11
4	Chauraar	E E00	m² GFA	PM	2.7	trips per 100m ² GFA	100%	149
4	Showroom	5,500	m- GFA	Weekend	3.9	trips per 100m ² GFA	100%	215
				Daily	19	trips per 100m ² GFA	100%	1,045
	•					Sub -total	AM peak hour trips	122
						Sub -total	PM peak hour trips	149
						Sub -total Week	end peak hour trips	215
							Sub -total Daily trips	1,058

16

Table 3.1 Development traffic generation (continued)

ID	Land Use	Qu	antity	Peak Period	Tra	affic Generation Rate	External trip %	Traffic Generation Volume
Preci	nct 3	•			•			
	0.11			AM	0.28	trips per parking space	100%	104
_	Outdoor sport and	F	Parking	PM	0.28	trips per parking space	100%	104
5	recreation (Waterpark)	371	spaces	Weekend	0.28	trips per parking space	100%	104
	(waterpark)			Daily	2.8	trips per parking space	100%	1,039
				AM	0.25	trips per bed	100%	53
0	Hatal	209	Danma	PM	0.24	trips per bed	100%	51
6	Hotel	209	Rooms	Weekend	0.25	trips per bed	100%	53
				Daily	2.7	trips per bed	100%	565
	F I I	Food and drink outlet (restaurant /		AM	5	trips per 100m ² GFA	50%	6
7			204 m² GFA	PM	5	trips per 100m ² GFA	50%	6
1	(restaurant / café)			Weekend	5	trips per 100m ² GFA	50%	6
	care)			Daily	60	trips per 100m ² GFA	50%	62
		1,523 m ² GFA		AM	10	trips per 100m ² GFA	50%	77
0	Function		4 500	2.054	PM	10	trips per 100m ² GFA	50%
8	facility	1,523	III- GFA	Weekend	10	trips per 100m ² GFA	50%	77
				Daily	100	trips per 100m ² GFA	50%	762
						Sub-total	AM peak hour trips	240
Sub -total PM peak hour trips						238		
						Sub -total Week	end peak hour trips	240
						;	Sub -total Daily trips	2,428
Total AM peak hour trips						660		
						Total	PM peak hour trips	780
						Total Week	end peak hour trips	862
						Т	otal Daily hour trips	7,351

3.2 Trip distribution

3.2.1 In / Out directional splits

TMR's Guide to Traffic Impact Assessment (GTIA) stipulates4:

"Peak hour development-generated traffic volumes need to be split into entry (IN) and exit (OUT) volumes for assignment of this traffic to the access intersection and to the surrounding road network."

Typical In / Out traffic splits were utilised for the residential components (i.e. 30% In / 70% Out in the AM peak hour, and 60% In / 40% Out during the PM peak hour). For the weekend peak hour, traffic splits of 40% In / 60% Out have been adopted. It is expected that short-term accommodation guests will behave in a similar manner.

For the commercial land uses, it is expected that regular ingress / egress trips would occur throughout the day, rather than concentrated in the peak hours. Therefore, for commercial activities, traffic splits of 50% 'In' and 50% 'Out' have been adopted for the peak hour trips.

For the outdoor sport and recreation (waterpark) land use, it is expected that most visitors will arrive in the morning and leave in the afternoon, therefore traffic splits of 90% In / 10% Out in the AM peak hour and 10% In / 90% Out in the PM peak hour have been adopted. For the weekend peak, being around midday, it is expected that visitor arrival / departure will vary when compared to weekday travel patterns, therefore traffic splits of 70% 'In' and 30% 'Out' have been adopted.

⁴ Department of Transport and Main Roads (December 2018), *Guide to Traffic Impact Assessment (Version no. 1.2)* s.8.2.2, p.31.

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

For Precinct 2 which will either comprise dwelling unit or showroom land uses, the land use with the highest traffic generation has been adopted for this assessment. Based on the traffic generation calculations shown in **Table 3.1**, the dwelling unit land use has the higher traffic generation in the AM peak hour, however in the PM peak hour and weekend peak hour, the showroom land use has the higher traffic generation.

The peak hour traffic splits of the generated vehicle trips are provided in **Table 3.2.1**.

Table 3.2.1 Development traffic splits

ID	Land Use	Traffic Generation	Peak Period	IN%	IN Trips	OUT %	OUT TRIPS
Prec	inct 1						
		168	AM Peak	50%	84	50%	84
1	Food and drink (fast food)	213	PM Peak	50%	106.5	50%	106.5
	(last losa)	224	Weekend Peak	50%	112	50%	112
	Shop / food and drink	80	AM Peak	50%	40	50%	40
2	outlet	80	PM Peak	50%	40	50%	40
	(restaurant / café)	80	Weekend Peak	50%	40	50%	40
		50	AM Peak	50%	25	50%	25
3	Hotel (Tavern)	100	PM Peak	50%	50	50%	50
		103	Weekend Peak	50%	51.5	50%	51.5
		Sı	ub-total AM peak hour	In trips	149	Sub-total AM peak hour Out trips	149
		Sı	ub-total PM peak hour	In trips	196.5	Sub-total PM peak hour Out trips	196.5
		Sub-tota	l Weekend peak hour	In trips	203.5	Sub-total Weekend peak hour Out trips	203.5
Prec	inct 2						
		122	AM Peak	30%	37	70%	85
& 5	Dwelling unit or showroom	149	PM Peak	50%	74.5	50%	74.5
J	or snowroom	215	Weekend Peak	50%	107.5	50%	107.5
Prec	inct 3						
	Outdoor or ort	104	AM Peak	90%	94	10%	10
6	Outdoor sport and recreation	104	PM Peak	10%	10	90%	94
	(Waterpark)	104	Weekend Peak	70%	73	30%	31
		53	AM Peak	30%	16	70%	37
7	Hotel	51	PM Peak	60%	31	40%	20
		53	Weekend Peak	40%	21	60%	32
	Food and drink	6	AM Peak	50%	3	50%	3
8	outlet (restaurant /	6	PM Peak	50%	3	50%	3
	café)	6	Weekend Peak	50%	3	50%	3
		77	AM Peak	50%	38.5	50%	38.5
9	Function facility	77	PM Peak	50%	38.5	50%	38.5
	raomty	77	Weekend Peak	50%	38.5	50%	38.5
		Sı	ub-total AM peak hour	In trips	151.5	Sub-total AM peak hour Out trips	88.5
Sub-total PM peak hour In trips					82.5	Sub-total PM peak hour Out trips	155.5
		Sub-tota	al Weekend peak hour	In trips	135.5	Sub-total Weekend peak hour Out trips	104.5
			Total AM peak	IN trips	338	Total AM peak OUT trips	322
Total PM peak IN trips					354	Total PM peak OUT trips	426
			Total Weekend peak	IN trips	446	Total Weekend peak OUT trips	416

3.3 Traffic distribution

The development traffic distribution to / from the site on the surrounding road network has been calculated based on the development's location to key activity generators (town centres, schools, shopping centres, quarries etc.) and existing intersection directional splits from observed background traffic volumes at the key intersections identified in **Section 2.1.2**.

Under the existing scenario, the road extension of Lakeside Drive from Racecourse Road to Stuart Drive, as mentioned in **Section 1.2**, does not exist, therefore traffic distribution only considers the Racecourse Road signalised intersections. The anticipated development traffic distribution percentages are shown in **Figure 3.3.1**, with the resultant traffic volumes shown in **Figure 3.3.2**.

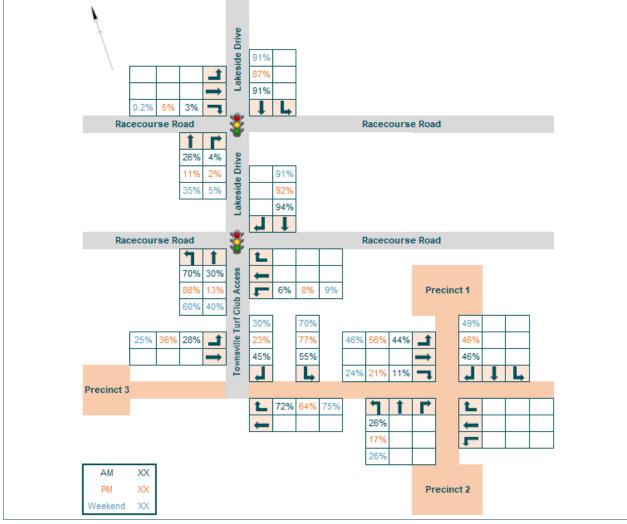


Figure 3.3.1 Development distributions (%)

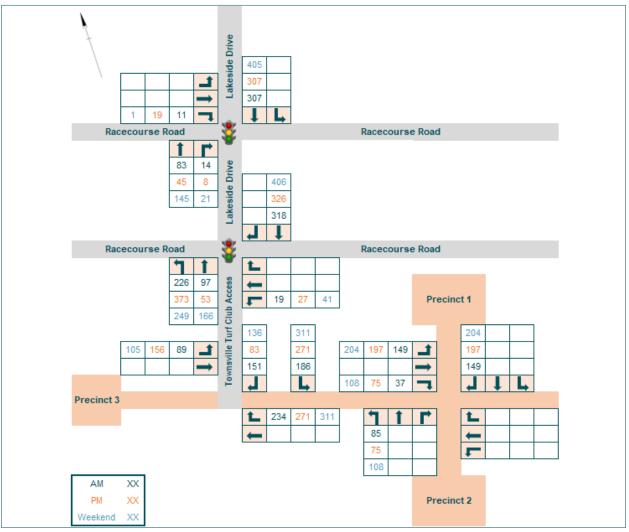


Figure 3.3.2 Development distributions (vehicles)

3.4 Assessment of development traffic impacts

3.4.1 Assumptions

The following assumptions have been relied upon for the purposes of undertaking this traffic assessment:

- the proposed development will not be staged, and the ultimate development will commence operation by 2029,
 and
- 2% compounding growth rate applied to traffic volumes on Lakeside Drive and Racecourse Road.

Based on these assumptions, the following scenarios have been analysed for the potentially affected intersections:

- 1. 2029 Base case (existing with no development)
- 2. 2029 Development case (existing with development)

3.5 Base case traffic volumes

Base case traffic volumes have been determined for the year of opening (2029) by applying the compounding annual growth rates (CAGR) determined in **Section 3.4.1**, to the background traffic volumes, the results of which are presented in **Figure 3.5**.



Figure 3.5 2029 – Base case traffic volumes (existing with no development)

3.6 Development traffic volumes

Development case traffic volumes have been calculated by adding development generated traffic to the existing (or background traffic) for the year of opening (2029), the results of which are presented in **Figure 3.6**.

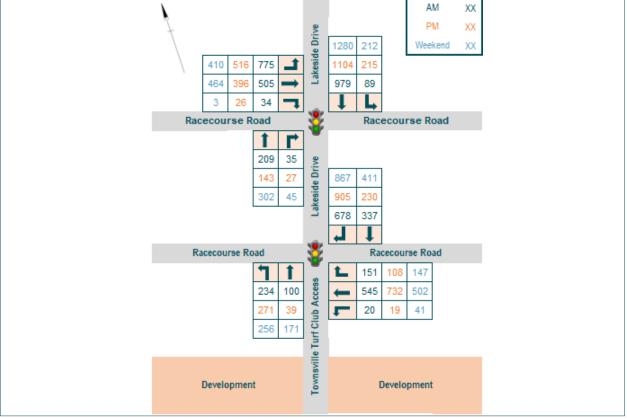


Figure 3.6 2029 – Development case traffic volumes (existing with development)

4. Intersection analysis

4.1 Study area

The extent of the study area adopted for this intersection analysis has been based on *Section 6.4* of TMR's *GTIA*, in particular any road link or intersection movements when the development generated traffic exceeds the base traffic by 5%.

Based on the above, the extent of the study area adopted for this assessment is shown in Figure 4.1.

Using the design traffic volumes determined for each scenario, intersection analysis using SIDRA 9.1 intersection analysis software was undertaken for the Racecourse Road / Lakeside Drive signalised intersection and Racecourse Road / Lakeside Drive / Townsville Turf Club Access signalised intersection for each of the scenarios outlined in **Section 3.4.1**.

Figure 4.1 Study area

4.2 Racecourse Road / Lakeside Drive

A summary of the key performance indicators as determined by the SIDRA analysis for the year of opening (2029) base case and development case scenarios is presented in **Table 4.2**. The assessment considers the ultimate development being operational by 2029.

The results of the SIDRA analysis demonstrate that the Racecourse Road / Lakeside Drive signalised intersection exceeds acceptable key performance criteria in the year of opening (2029) development scenario in terms of degree of saturation, average delay and 95th percentile back of queue.

SIDRA outputs are included in Appendix D and Appendix E.

Table 4.2 Lakeside Drive SIDRA results – year of opening (2029) – Base vs. Development

Approach
2029 AM peak hour
Lakeside Drive (S)
Lakeside Drive (N)
Racecourse Road (W)
2029 PM peak hour
Lakeside Drive (S)
Lakeside Drive (N)
Racecourse Road (W)
2029 Weekend peak hour
Lakeside Drive (S)
Lakeside Drive (N)
Racecourse Road (W)

May do	gree of				
saturation (DOS)					
Base	Dev				
0.291	0.450				
0.685	1.018				
0.637	0.647				
Base	Dev				
0.300	0.391				
0.559	0.848				
0.480	0.485				
Base	Dev				
0.290	0.528				
0.496	0.771				
0.419	0.434				

Average	delay (s)
Base	Dev
44.2	44.2
43.4	105.8
9.7	10.0
Base	Dev
32.8	32.8
27.6	37.4
13.7	14.2
Base	Dev
29.5	29.5
23.3	31.9
17.2	17.9

Average level of service (LOS)					
Base	Dev				
D	D				
D	F				
А	А				
Base	Dev				
С	С				
С	D				
В	В				
Base	Dev				
С	С				
С	С				
В	В				

Max 95% back of queue (m)					
Base	Dev				
27.3	28.7				
136.3	332.6				
94.8	106.8				
Base	Dev				
22.7	23.0				
146.7	288.4				
81.6	82.6				
Base	Dev				
30.9	33.0				
128.5	242.8				
84.1	87.7				

4.3 Racecourse Road / Lakeside Drive / Townsville Turf Club Access

A summary of the key performance indicators as determined by the SIDRA analysis for the year of opening (2029) base case and development case scenarios is presented in **Table 4.3**. The assessment considers the ultimate development being operational by 2029.

The results of the SIDRA analysis demonstrate that the Racecourse Road / Lakeside Drive / Townsville Turf Club Access signalised intersection performs within acceptable key performance criteria for the year of opening (2029) base case and development case scenarios.

SIDRA outputs are included in **Appendix D** and **Appendix E**.

Table 4.3 Turf Club Access SIDRA results – year of opening (2029) – Base vs. Development

Approach							
2029 AM peak hour							
Townsville Turf Club Access (S)							
Racecourse Road (E)							
Lakeside Drive (N)							
2029 PM peak hour							
Townsville Turf Club Access (S)							
Racecourse Road (E)							
Lakeside Drive (N)							
2029 Weekend peak hour							
Townsville Turf Club Access (S)							
Racecourse Road (E)							
Lakeside Drive (N)							

Max degree of saturation (DOS)						
Base	Dev					
0.019	0.402					
0.482	0.482					
0.482	0.672					
Base	Dev					
0.042	0.857					
0.621	0.621					
0.618	0.825					
Base	Dev					
0.015	0.502					
0.502	0.502					
0.513	0.740					

Average delay (s)							
Base	Dev						
22.4	24.0						
34.7	34.7						
5.7	5.7						
Base	Dev						
16.3	49.2						
36.1	36.1						
7.4	7.4						
Base	Dev						
26.4	29.3						
40.2	40.2						
5.6	5.6						

	Average level of service (LOS)								
Base	Dev								
С	С								
С	С								
А	Α								
Base	Dev								
В	D								
D	D								
А	Α								
Base	Dev								
С	С								
D	D								
А	Α								

Max 95% back of queue (m)						
Base	Dev					
1.0	32.8					
104.5	104.5					
8.2	19.7					
Base	Dev					
2.5	186.3					
141.0	141.0					
33.8	87.5					
Base	Dev					
0.9	38.7					
93.6	93.6					
7.5	20.2					

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

4.4 Intersection delay

An assessment of aggregate-intersection-delay impact 'with development traffic' has been undertaken for the Racecourse Road / Lakeside Drive signalised intersection and Racecourse Road / Lakeside Drive / Townsville Turf Club Access signalised intersection in accordance with Section 11.3.1 of TMR's GTIA, the results of which are shown in **Table 4.4**.

Table 4.4 Aggregate-intersection-delay-impact 'with development'

2029 Backg	2029 Background delay impact (veh-min)		2029 Des	ign delay impact	(veh-min)	Net change (%)			
AM	PM	Weekend	AM	PM	Weekend	AM	PM	Weekend	
1412.6	1493.7	1350.5	2195.4	1686.7	1500.2	55.4%	12.9%	11.1%	

The assessment indicates that the aggregate-intersection-delay impact 'with development' is greater than 5%, and therefore mitigation measures are triggered by the aggregate-intersection-delay assessment.

4.5 Road safety assessment

A road safety assessment of the existing surrounding road network characteristics has been undertaken in accordance with Section 9 of TMR's GTIA to determine whether development related traffic adversely impacts the safety and efficiency of the existing State-controlled road network, the results of which are shown in **Table 4.5**.

Table 4.5 Road safety assessment

		Withou /elopm	•	dev	With relopm	ent					With development and mitigation		
Risk Item	Likelihood	Consequence	Risk Score	Likelihood	Consequence	Risk Score	Mitigation measures / comments	Likelihood	Consequence	Risk Score			
Increase in traffic at the Racecourse Road / Lakeside Drive signalised intersection. Potential for rear end, vehicle adjacent approach and vehicle opposite approach related crashes.	1	5	M	3	5	Н	Existing road safety issues are present at the intersection with a crash cluster shown for vehicle adjacent approach: through – through related crashes. Additionally, the results of the SIDRA analysis for the 2029 – Development case (existing with development) scenario show capacity issues. Based on the above, it is proposed to: - extend Lakeside Drive, connecting Racecourse Road to Stuart Drive to reroute some vehicle movements away from Racecourse Road, and - apply a common control group (CCG) phasing sequence to the existing Racecourse Road eastbound / Lakeside Drive and Racecourse Road westbound / Lakeside Drive / Townsville Turf Club Access signalised intersections and modify the phasing sequence and timing to cater for existing and development generated traffic.	2	5	М			
Increase in traffic at the Racecourse Road / Lakeside Drive / Townsville Turf Club Access intersection. Potential for rear end, vehicle adjacent approach and vehicle opposite approach related crashes.	1	5	M	2	5	M	No action. review of previous 5-year crash data demonstrates no crash trends at the Racecourse Road / Lakeside Drive / Townsville Turf Club Access intersection, and SIDRA analysis confirms no capacity issues with the introduction of development generated traffic volumes.		N/A				

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

5. Proposed infrastructure upgrades

5.1 Mitigation measures

As outlined in **Section 4.4**, an assessment of aggregate-intersection delay impact 'with development' has been undertaken for the Racecourse Road / Lakeside Drive signalised intersection and Racecourse Road / Lakeside Drive / Townsville Turf Club Access signalised intersection in accordance with *Section 11.3.1* of *GTIA*, which concludes that mitigation measures are triggered as a result of the development's aggregate-intersection-delay impact.

In addition, **Section 4.5** concludes that mitigation measures at the Racecourse Road / Lakeside Drive signalised intersection are triggered to address road safety issues.

To ensure the safety and efficiency of the State-controlled road network is maintained post development, the following infrastructure upgrades are proposed:

- apply a common control group (CCG) phasing sequence to the existing Racecourse Road / Lakeside Drive and Racecourse Road / Lakeside Drive / Townsville Turf Club Access signalised intersections and modify the phasing sequence and timing to cater for existing and development generated traffic, as well as a new road connection to Stuart Drive
- provide a new road connection between Racecourse Road and Stuart Drive connecting to the Stuart Drive / Edison Street roundabout in the south and Racecourse Road / Lakeside Drive signalised intersection in the north. The road connection will be to a two-lane, two-way road configuration in accordance with Council Standard Drawing SD-002 – Typical Cross Sections, Major Collector Roads and direct property access will be prohibited
- provide a new four-leg single lane roundabout at the midpoint between Racecourse Road and Stuart Drive. The eastbound and westbound approaches to this roundabout will facilitate access to the proposed development, and
- upgrade the existing Stuart Drive / Edison Street three-leg roundabout to a four-leg double lane roundabout in the north-south direction. A four-lane, two-way carriageway on both Stuart Drive approaches will be required for 130m on the approach and 170m on the departure side of the roundabout.

All transport infrastructure upgrades will be required prior to commencement of the development (year of opening (2029)) and will be designed in accordance with the TMR's *Road Planning and Design Manual*, 2nd *Edition* and Council's *Townsville City Plan (Version 2022/02)*.

Civil engineering drawings for the site are provided in Appendix F.

5.2 Revised traffic distribution

As a result of providing a new road connection between Racecourse Road and Stuart Drive, the traffic distribution of the surrounding road network will change. The following sections detail the changes to existing background traffic and development generated traffic as a result of Lakeside Drive being extended from Racecourse Road to Stuart Drive.

5.2.1 Revised background traffic distribution

Once Lakeside Drive is extended from Racecourse Road to Stuart Drive, it is expected that a proportion of existing traffic volumes at the key intersections identified in **Section 2.1.2** will reroute to the new 'Lakeside Drive extended' to travel between Racecourse Road and Stuart Drive. The following assumptions shown in **Table 5.2.1** have been made with revised 2024 background traffic volumes shown in **Figure 5.2.1**.

Table 5.2.1 Background traffic redistribution assumptions

Intersection	Existing configuration	Road corridor changes					
Racecourse Road / Lakeside Drive	Signalised intersection	10% of eastbound through and left turning traffic, added to northbound through and right turn traffic on Lakeside Drive extended					
Racecourse Road / Lakeside Drive /		Increase in northbound traffic at the Racecourse Road / Lakeside Drive intersection added to northbound through traffic					
Townsville Turf Club Access	Signalised intersection	10% of southbound right turn traffic added to southbound through traffic					
		10% of westbound through traffic added to westbound left turn traffic					
Stuart Drive / Edison Street	3-leg single lane	Increase in northbound traffic at the Racecourse Road / Lakeside Drive intersection added to northbound movements into Lakeside Drive extended					
	roundabout	Increase in southbound traffic at the Racecourse Road / Lakeside Drive intersection added to southbound movements out of Lakeside Drive extended					

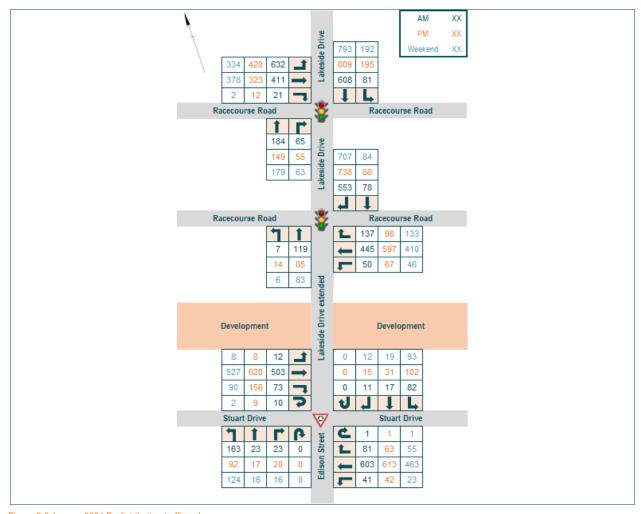


Figure 5.2.1 2024 Redistribution traffic volumes

5.2.2 Revised development traffic distribution

As a result of providing a new road connection from Racecourse Road to Stuart Street, the traffic distribution for the proposed development will change. The modified development traffic distribution percentages are shown in **Figure 5.2.2.1**, with the resultant traffic volumes shown in **Figure 5.2.2.2**.

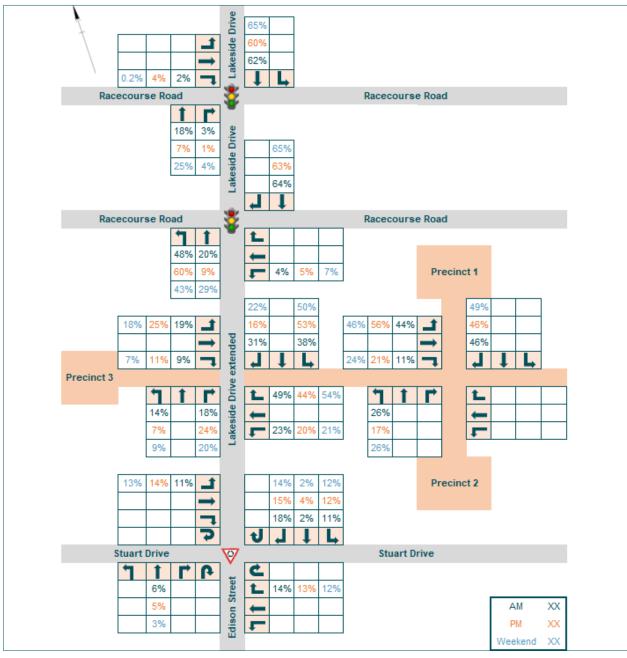


Figure 5.2.2.1 Post upgrades development distributions (%)

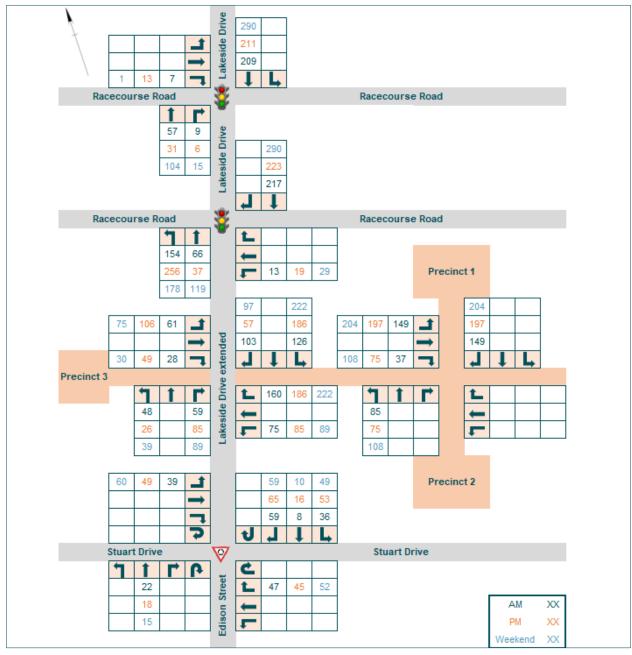


Figure 5.2.2.2 Post upgrades development distributions (vehicles)

5.3 Assessment of traffic impacts

5.3.1 Assumptions

The following assumptions have been relied upon for the purposes of undertaking this traffic assessment:

- the development will not be staged with the ultimate development expected to commence operation by 2029
- all transport infrastructure will be operational prior to commencement
- the 10-year design horizon is 2039
- 2% compounding growth rate applied to traffic volumes on Lakeside Drive, Racecourse Road and the future Lakeside Drive extension
- 3% compounding growth rate applied to traffic volumes on Stuart Drive, and
- 1% compounding growth rate applied to traffic volumes on Edison Street.

Based on these assumptions, the following scenarios have been analysed for the key intersections identified in **Section 2.1.2**:

- 1. 2029 Design case (redistributed traffic with development)
- 2. 2039 Design case (redistributed traffic with development).

5.4 Design traffic volumes

Design case traffic volumes have been calculated by adding development generated traffic to the redistributed traffic volumes for the year of opening (2029) (**Figure 5.4.1**) and the 10-year design horizon (2039) (**Figure 5.4.2**).

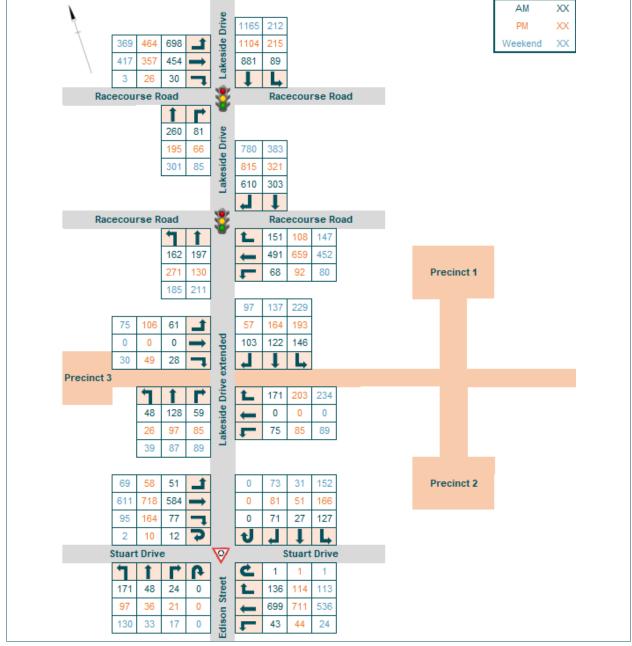


Figure 5.4.1 2029 – Design case traffic volumes (redistributed traffic with development)

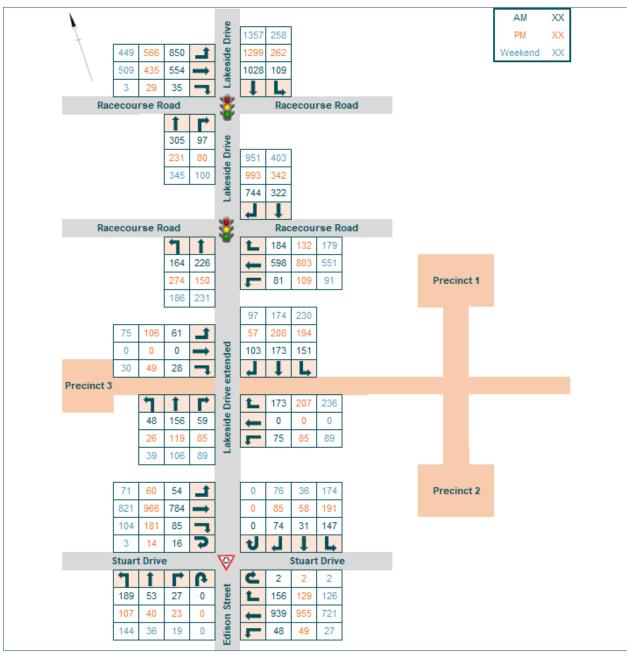


Figure 5.4.2 2039 - Design case traffic volumes (redistributed traffic with development)

5.5 Design case intersection analysis

Intersection analysis using SIDRA 9.1 intersection analysis software was undertaken for the scenarios mentioned in **Section 5.3.1** for the proposed transport infrastructure upgrades which includes the following intersections:

- 1. Racecourse Road / Lakeside Drive / Lakeside Drive extended signalised intersections
- 2. Lakeside Drive extended / Development Access 4-leg single lane roundabout
- 3. Stuart Drive / Lakeside Drive extended / Edison Street 4-leg double lane roundabout.

5.5.1 Racecourse Road / Lakeside Drive / Lakeside Drive extended

As part of the proposed transport infrastructure upgrades a CCG phasing sequence will be applied to the Racecourse Road / Lakeside Drive / Lakeside Drive extended signalised intersections with the phasing sequence and timing designed to cater for increased traffic movements in and out of the proposed development via Lakeside Drive extended. Maintaining a cycle time of 120 seconds, the proposed CCG phasing sequence is shown in **Figure 5.5.1**.

Figure 5.5.1 Proposed Racecourse Road / Lakeside Drive / Lakeside Drive extended phasing

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

A summary of the key performance indicators as determined by the SIDRA analysis for the year of opening (2029) and 10-year design horizon (2039) design case scenarios for the proposed Racecourse Road / Lakeside Drive / Lakeside Drive extended signalised intersections are presented in **Table 5.5.1.1** and **Table 5.5.1.2** with SIDRA outputs being provided in **Appendix G**.

The results of the SIDRA analysis demonstrate that the proposed Racecourse Road / Lakeside Drive / Lakeside Drive extended signalised intersections will operate within acceptable performance criteria in the year of opening (2029) and 10-year design horizon (2039) scenarios. Vehicle queues on all intersection approaches are contained prior to the next upstream intersection and within the proposed turn pockets.

Table 5.5.1.1 Racecourse Road design case SIDRA results – year of opening (2029)

Approach	Degree of saturation	Average delay (s)	Level of service	95% back of queue (m)		
Racecourse Road / Lakeside Dri	ve		•	•		
2029 AM						
Lakeside Drive (S)	0.716	38.5	D	53.2		
Lakeside Drive (N)	0.634	34.5	С	161.1		
Racecourse Road (W)	0.677	13.1	В	109.1		
2029 PM	1			1		
Lakeside Drive (S)	0.642	45.1	D	40.9		
Lakeside Drive (N)	0.612	24.3	С	176.9		
Racecourse Road (W)	0.514	17.0	В	72.0		
2029 Weekend	1					
Lakeside Drive (S)	0.657	30.1	С	51.9		
Lakeside Drive (N)	0.611	22.4	С	178.9		
Racecourse Road (W)	0.561	25.5	С	94.5		
Racecourse Road / Lakeside Dri	ve / Lakeside Drive extended					
2029 AM						
Lakeside Drive extended (S)	0.552	35.8	D	44.2		
Racecourse Road (E)	0.404	29.4	С	88.6		
Lakeside Drive (N)	0.558	6.9	А	46.2		
2029 PM						
Lakeside Drive extended (S)	0.623	29.7	С	70.3		
Racecourse Road (E)	0.722	40.3	D	140.2		
Lakeside Drive (N)	0.566	6.2	А	41.6		
2029 Weekend						
Lakeside Drive extended (S)	0.459	33.1	С	43.9		
Racecourse Road (E)	0.679	45.9	D	95.5		
Lakeside Drive (N)	0.523	5.0	А	29.2		

Table 5.5.1.2 Racecourse Road design case SIDRA results – 10-year design horizon (2039)

Approach	Degree of saturation	Average delay (s)	Level of service	95% back of queue (m)		
Racecourse Road / Lakeside Driv	/e	•		•		
2039 AM						
Lakeside Drive (S)	0.839	44.1	D	67.7		
Lakeside Drive (N)	0.754	39.0	D	204.4		
Racecourse Road (W)	0.836	16.4	В	242.9		
2039 PM						
Lakeside Drive (S)	0.761	46.8	D	50.7		
Lakeside Drive (N)	0.745	28.3	С	239.8		
Racecourse Road (W)	0.624	17.6	В	89.8		
2039 Weekend	<u>'</u>	1		1		
Lakeside Drive (S)	0.752	33.3	С	66.2		
Lakeside Drive (N)	0.735	26.0	С	239.1		
Racecourse Road (W)	0.681	25.9	С	116.2		
Racecourse Road / Lakeside Driv	ve / Lakeside Drive extended			1		
2039 AM						
Lakeside Drive extended (S)	0.634	38.7	D	51.7		
Racecourse Road (E)	0.492	30.5	С	112.3		
Lakeside Drive (N)	0.653	7.2	А	66.0		
2039 PM						
Lakeside Drive extended (S)	0.784	46.5	D	126.0		
Racecourse Road (E)	0.881	49.7	D	201.7		
Lakeside Drive (N)	0.667	6.4	А	61.3		
2039 Weekend						
Lakeside Drive extended (S)	0.504	35.5	D	48.5		
Racecourse Road (E)	0.828	50.8	D	127.9		
Lakeside Drive (N)	0.610	5.2	А	40.8		

5.5.2 Lakeside Drive extended / Development Access

As part of the proposed transport infrastructure upgrades a new four-leg single lane roundabout will be provided at the midpoint between Racecourse Road and Stuart Drive. Direct property access to the new Lakeside Drive extended will not be permitted with all development traffic to flow through the eastbound and westbound approaches to this roundabout. The SIDRA layout for the proposed roundabout is shown in **Figure 5.5.2**.

A summary of the key performance indicators as determined by the SIDRA analysis for the year of opening (2029) and 10-year design horizon (2039) design case scenarios for the proposed Lakeside Drive extended / Development Access roundabout are presented in **Table 5.5.2.1** and **Table 5.5.2.2** with SIDRA outputs being provided in **Appendix G**.

The results of the SIDRA analysis demonstrate that the proposed Lakeside Drive extended / Development Access roundabout will operate within acceptable performance criteria in the year of opening (2029) and 10-year design horizon (2039) scenarios. Vehicle queues on both Lakeside Drive approaches are contained prior to Racecourse Road and Stuart Drive.

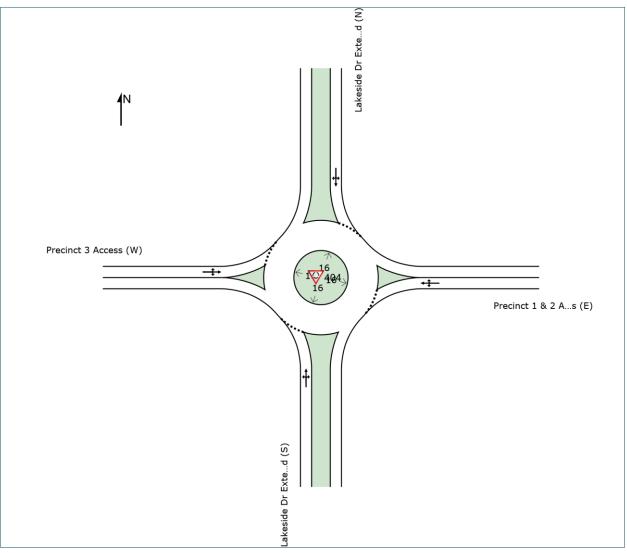


Figure 5.5.2 Proposed Lakeside Drive extended / Development Access roundabout SIDRA layout

Table 5.5.2.1 Development access design case SIDRA results – year of opening (2029)

Approach	Degree of saturation	Average delay (s)	Level of service	95% back of queue (m)		
2029 AM	·	•		•		
Lakeside Drive extended (S)	0.247	7.5	А	11.6		
Precincts 1 and 2 access (E)	0.251	9.1	А	11.8		
Lakeside Drive extended (N)	0.298	6.1	А	15.7		
Precinct 3 access (W)	0.099	7.8	А	4.1		
2029 PM						
Lakeside Drive extended (S)	0.214	8.0	А	10.0		
Precincts 1 and 2 access (E)	0.298	9.4	А	14.6		
Lakeside Drive extended (N)	0.352	5.9	А	18.7		
Precinct 3 access (W)	0.176	8.2	А	7.7		
2029 Weekend						
Lakeside Drive extended (S)	0.239	8.5	А	11.1		
Precincts 1 and 2 access (E)	0.330	9.4	А	16.4		
Lakeside Drive extended (N)	0.383	6.1	А	21.5		
Precinct 3 access (W)	0.126	8.1	А	5.3		

34

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

Table 5.5.2.2 Development access design case SIDRA results – 10-year design horizon (2039)

<u> </u>	•			1
Approach	Degree of saturation	Average delay (s)	Level of service	95% back of queue (m)
2029 AM				
Lakeside Drive extended (S)	0.277	7.5	А	13.5
Precincts 1 and 2 access (E)	0.257	9.4	А	12.2
Lakeside Drive extended (N)	0.319	6.0	А	17.1
Precinct 3 access (W)	0.102	8.0	А	4.3
2029 PM				
Lakeside Drive extended (S)	0.237	7.9	А	11.3
Precincts 1 and 2 access (E)	0.308	9.7	А	15.2
Lakeside Drive extended (N)	0.382	5.9	А	20.7
Precinct 3 access (W)	0.180	8.3	А	7.9
2029 Weekend				
Lakeside Drive extended (S)	0.261	8.4	А	12.4
Precincts 1 and 2 access (E)	0.341	9.7	А	17.0
Lakeside Drive extended (N)	0.406	6.1	А	23.4
Precinct 3 access (W)	0.128	8.2	А	5.4

5.5.3 Stuart Drive / Lakeside Drive extended / Edison Street

As part of the proposed transport infrastructure upgrades, the existing Stuart Drive / Edison Street three-leg roundabout will be upgraded to a four-leg double lane roundabout in the north-south direction. A four-lane, two-way carriageway on both Stuart Drive approaches will be required for 130m on the approach and 170m on the departure side of the roundabout. The SIDRA layout for the proposed roundabout is shown in **Figure 5.5.3**.

A summary of the key performance indicators as determined by the SIDRA analysis for the year of opening (2029) and 10-year design horizon (2039) design case scenarios for the proposed Stuart Drive / Lakeside Drive extended / Edison Street roundabout are presented in **Table 5.5.3.1** and **Table 5.5.3.2** with SIDRA outputs being provided in **Appendix G**.

The results of the SIDRA analysis demonstrate that the proposed Stuart Drive / Lakeside Drive extended / Edison Street roundabout will operate within acceptable performance criteria in the year of opening (2029) and 10-year design horizon (2039) scenarios. Vehicle queues on all intersection approaches are contained prior to the next upstream intersection.

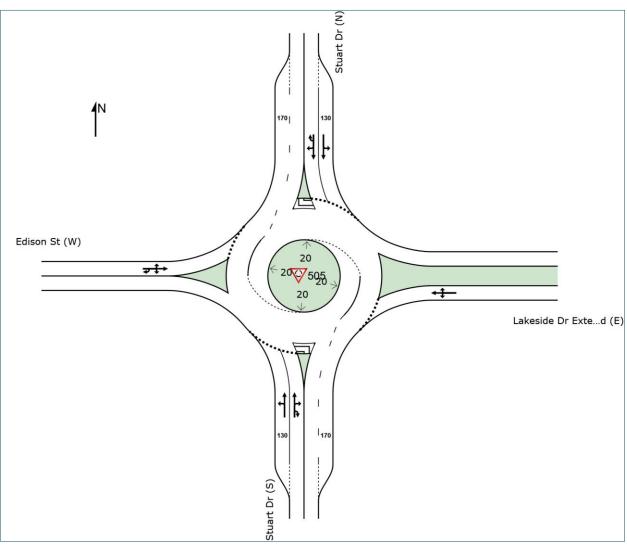


Figure 5.5.3 Stuart Drive / Lakeside Drive extended / Edison Street roundabout SIDRA layout

Table 5.5.3.1 Stuart Drive design case SIDRA results – year of opening (2029)

Approach	Degree of saturation	Average delay (s)	Level of service	95% back of queue (m)
2029 AM	·	•		
Stuart Drive (S)	0.370	8.1	А	19.0
Lakeside Drive Extended (E)	0.313	9.0	А	10.0
Stuart Drive (N)	0.315	7.7	А	15.2
Edison Street (W)	0.415	10.5	В	14.5
2029 PM				
Stuart Drive (S)	0.398	8.6	А	19.9
Lakeside Drive Extended (E)	0.449	10.4	В	16.6
Stuart Drive (N)	0.385	7.8	А	19.7
Edison Street (W)	0.279	9.6	А	8.7
2029 Weekend				
Stuart Drive (S)	0.282	7.6	А	12.9
Lakeside Drive Extended (E)	0.340	8.7	А	10.8
Stuart Drive (N)	0.310	7.2	А	14.3
Edison Street (W)	0.274	8.3	А	8.2

Table 5.5.3.2 Stuart Drive design case SIDRA results – 10-year design horizon (2039)

Approach	Degree of saturation	Average delay (s)	Level of service	95% back of queue (m)		
2029 AM	·	•				
Stuart Drive (S)	0.490	9.1	А	28.7		
Lakeside Drive Extended (E)	0.405	10.8	В	14.6		
Stuart Drive (N)	0.420	8.4	А	22.8		
Edison Street (W)	0.552	14.4	В	21.9		
2029 PM						
Stuart Drive (S)	0.534	9.8	А	30.5		
Lakeside Drive Extended (E)	0.601	13.7	В	25.9		
Stuart Drive (N)	0.505	8.7	А	29.8		
Edison Street (W)	0.379	12.2	В	13.1		
2029 Weekend						
Stuart Drive (S)	0.372	8.1	А	18.6		
Lakeside Drive Extended (E)	0.430	10.6	В	15.5		
Stuart Drive (N)	0.406	7.8	А	20.8		
Edison Street (W)	0.344	9.8	А	11.1		

5.6 Design case road link assessment

Adopting industry accepted typical midblock capacity volumes, the trigger for road link duplication based on background traffic growth alone for the year of opening (2029) and 10-year design horizon (2039) scenarios is shown in **Table 5.6.1**.

Based on background traffic growth alone, the existing four-lane, two-way configuration of Lakeside Drive and Racecourse Road is suitable up to the 10-year design horizon (2039). Stuart Drive however, triggers duplication to a four-lane, two-way carriageway at the year of opening (2029) based on background traffic growth alone.

Table 5.6.1 Midblock capacity assessment – background traffic

Road link	Existing configuration	AADT (2024)	Duplication AADT (vpd)	Growth rate	AADT (2029)	AADT (2039)
Lakeside Drive	Four-lane, two-way road	9,878	37,600	2%	12,034	14,669
Racecourse Road	Four-lane, one-way road	23,528	37,600	2%	25,977	31,666
Stuart Drive	Two-lane, two-way road	14,042	16,000	3%	16,279	21,877

Introducing development generated traffic to the year of opening (2029) and 10-year design horizon (2039) scenarios, the trigger for road link duplication is shown in **Table 5.6.2**.

Table 5.6.2 Midblock capacity assessment – background plus development traffic

Lakeside Drive Fo	our-lane, two-way road				2	
	Jul-laile, two-way load	9,878	37,600	3,353	15,387	18,022
Racecourse Road For	our-lane, one-way road	23,528	37,600	2,770	28,747	34,436
Stuart Drive Tw	wo-lane, two-way road	14,042	16,000	1,089	17,368	22,966
Lakeside Drive extended Tw	wo-lane, two-way road	2,550 ¹	16,000	7,351	10,223	10,852

The existing four-lane, two-way configuration of Lakeside Drive and Racecourse Road and the proposed two-lane, two-way configuration for the new Lakeside Drive extended road has capacity to accommodate development generated traffic and background traffic in the 10-year design horizon (2039).

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

Regarding Stuart Drive, duplication to a four-lane, two-way carriageway is required in the year of opening (2029) and 10-year design horizon (2039) scenarios, however the need to upgrade is triggered by background traffic growth only, irrespective of whether the proposed development is introduced. Additionally, as detailed in **Section 5.5.3** a suitable four-leg double lane roundabout can be established for the Stuart Drive / Lakeside Drive extended / Edison Street intersection using short entry and exit lanes to provide a four-lane, two-way carriageway for Stuart Drive through the roundabout.

Based on the above, it would not be reasonable for the Applicant to be required to upgrade Stuart Drive to a four-lane, two-way configuration as part of this development application, given that duplication is required as a consequence of background traffic growth alone, not as a consequence of the proposed development.

6. Response to development codes

A detailed review of the proposed development against the *Townsville City Plan (Version 2022/02) – Transport impact, access and parking code* and the relevant sections of the Department of State Development, Infrastructure, Local Government and Planning *State Code 1: Development in a state-controlled road environment* and *State Code 6: Protecting the state-controlled road network* are provided in **Appendix H**.

7. Conclusions

This report presents the findings related to assessment of traffic impact related matters for a proposed development located at 1-105 Racecourse Road, Cluden. Based on the presented findings, it can be concluded that the proposed development will not introduce any adverse traffic impacts which would prevent its approval with appropriate conditions.

8. References

- 1. City of Townsville, Townsville City Plan (Version 2022/02), February 2022, Townsville.
- 2. Austroads, Guide to Traffic Management Part 3: Transport Studies and Analysis Methods, 2020, Sydney.
- 3. Akcelik & Associates, SIDRA Intersection User Guide for Version 9.1, 9th Edition, 2022, Melbourne.
- 4. Austroads, Guide to Traffic Management Part 12: Traffic Impacts of Developments, 2016, Sydney.
- 5. Queensland Government (Department of Transport and Main Roads), *Guide to Traffic Impact Assessment*, December 2018, Brisbane.
- 6. New South Wales Government (Roads and Traffic Authority), *Guide to Traffic Generating Developments Issue* 2.2, 2002, Sydney.
- 7. New South Wales Government (Roads and Maritime Services), *Guide to Traffic Generating Developments Technical Direction (TDT2013/04)*, 2014, Sydney.
- 8. Institute of Transportation Engineers, Trip Generation Manual (10th Edition), 2017, Washington.
- 9. Queensland Government (Department of Transport and Main Roads), *Traffic Generation Data 2006 2018*, November 2018, Brisbane.
- 10. Queensland Government (Department of Main Roads), Road Planning and Design Manual: Chapter 3 Road Planning and Design Fundamentals, December 2005, Brisbane.

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

Appendix A Plans of development

Document Set IDR264t 85660-RP02-A Version: 1, Version Date: 24/10/2024

MASTERPLAN

BUBBLE DIAGRAM

PRECINCT BREAKDOWN

PRECINCT 1 - RETAIL/ FASTFOOD

SITE AREAS

- AREA 24,300m2

COMMERCIAL SITE AREAS

- RETAIL FAST FOOD 1 3,700m2 - RETAIL FAST FOOD 2 3,600m2 - RETAIL FAST FOOD 3 3,000m2 -COMMUNITY TAVEN 3,100m2

PARKING

- REQUIRED x 275 (EST) - SUPPLIED x 240

PRECINCT 2 - UNITS OR LARGE FORMAT RETAIL

SITE AREAS

- AREA 23,250m2

APARTMENTS A + B AS SHOWN

- GROUND x 170 CARS - LEVEL 2 x 178 CARS - LEVEL 3 x 44 UNITS - LEVEL 4 x 44 UNITS - LEVEL 5 x 44 UNITS - LEVEL 6 x 44 UNITS - LEVEL 7 x 44 UNITS - LEVEL 8 x 10 UNITS TOTAL x 230 UNITS

PARKING

- REQUIRED (1.5/UNITS) x 173 - SUPPLIED x 174

PRECINCT 3 - WATERPARK/ VIP/ HOTEL

SITE AREAS

1,030m2 - HOTEL - WATERPARK 24,284m2 - VIP CLUB 9,596m2 - VIP EXTENDED AREA 1,600m2 FUTURE DEVELOPMENT SITE 1 11,100m2 FUTURE DEVELOPMENT SITE 2 5,950m2 HOTEL SUITES SUITES - LEVEL 1 x 32 SUITES - LEVEL 2 x 32 - LEVEL 3 SUITES x 32 - LEVEL 4 SUITES x 32 - LEVEL 5 SUITES x 32 - LEVEL 6 SUITES x 32

PARKING

- LEVEL 7

TOTAL

- REQUIRED x 300 (EST)
- SUPPLIED x 477

x 17

x 209

SUITES

HOTEL EXPANSION OPTIONS:

OPTION 1 (EXTENSION OF EXISITING)

TOTAL HOTEL ROOMS

HOTEL EXPANSION OPTIONS:

OPTION 1 (EXTENSION OF EXISITING)

HOTEL SUITES		
- LEVEL 1	SUITES	x 28
- LEVEL 2	SUITES	x 28
- LEVEL 3	SUITES	x 28
- LEVEL 4	SUITES	x 28
- LEVEL 5	SUITES	x 28
- LEVEL 6	SUITES	x 28
- LEVEL 7	SUITES	x 28
TOTAL		x 196 EXTRA ROOMS
TOTAL HO	TEL ROOMS	x 405

MASTERPLAN

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

Appendix B Intersection count data

Document Set IDR264ft \$56460-RP02-A Version: 1, Version Date: 24/10/2024

Leg Direction	Lakesio Southb	de Dr North				East Westb	ound		Lakeside D					Racecou Eastbour	rse Rd We	st				
Start Time	Thru	Left	U-Turn	Ann To	ntal Peds CW	Peds CCW App T		Peds CCW		Thru	U-Turn	Ann Total Ped	s CW I	Peds CCW Right	Thru	Left	Ann T	otal Peds CW	Peds CCW	Int Total
2024-05-09 06:00:00		59	34	0	93	0 0	0	0	n 2		6	0 8	0	n odd ddir ragni	0	153	34	187		288
2024-05-09 06:15:00		80	32	0	112	0 0	Ö	0	0 4	1	13	0 17	0	0	0	145	53	198) 0	327
2024-05-09 06:30:00		80	23	0	103	0 0	0	0	0 1	1	8	1 10	0	0	2	148	63	213	0	326
2024-05-09 06:45:00		102	22	0	124	0 0	0	0	0 5	5	10	0 15	0	0	0	123	76	199	0	338
2024-05-09 07:00:00		88	16	0	104	0 0	0	0	0 4	1	9	0 13	0	0	0	120	95	215	0	332
2024-05-09 07:15:00		145	21	0	166	0 0	0	0	0 8	3	25	0 33	0	0	2	130	94	226	0	425
2024-05-09 07:30:00		115	16	0	131	0 0	0	0	0 11	1	14	0 25	0	0	7	115	159	281	0	437
2024-05-09 07:45:00		159	13	0	172	0 0	0	0	0 4	1	24	0 28	0	0	4	103	165	272	0	472
2024-05-09 08:00:00		143	17	0	160	0 0	0	0	0 3	3	18	0 21	0	0	7	106	179	292	0	473
2024-05-09 08:15:00		110	28	0	138	0 0	0	0	0 8	-	42	0 50	0	0	5	126	201	332	0	520
2024-05-09 08:30:00		196	23	0	219	0 0	0	0	0 4		30	0 34	0	0	5	122	157	284	0	537
2024-05-09 08:45:00		140	27	0	167	0 0	0	0 (0 2		24	0 26	0	0	2	114	119	235	-	428
2024-05-09 09:00:00		145	38	0	183	0 0	0	0 (0 5	5	25	0 30	0	0	6	92	80	178	-	391
2024-05-09 09:15:00		116	32	0	148	0 0	0	0 (0 8	3	29	0 37	0	0	3	105	75	183		368
2024-05-09 09:30:00		119	30	0	149	0 0	0	0	0 6		21	0 27	0	0	7	78	70	155 (-	331
2024-05-09 09:45:00		129	27	0	156	0 0	0	0	0 6	7	33	0 39	0	0	4	72	58	134 (151 (329
2024-05-09 10:00:00		114	36	0	150 163	0 0	0	0	0 9	,	19	0 26	0	0		85	63		-	327
2024-05-09 10:15:00 2024-05-09 10:30:00		138 136	25 34	0	170	0 0	0	0 (0 8		24 30	0 33 0 37	0	0	6 4	111 81	61 77	178 (162 (178)		374 369
2024-05-09 10:30:00		106	31	0	137	0 0	0		0 4	1	18	0 22	0	0	2	100	69	171		330
2024-05-09 10:45:00		132	36	0	168	0 0	0		0 4	1		0 34	0	0	2	86	60	148		350
2024-05-09 11:15:00		145	36	0	181	0 0	Ö		0 6	3	18	0 24	0	0	5	86	76	167		372
2024-05-09 11:30:00		128		0	158	0 0	Ö		0 9	-		0 22	0	0	2	84	66	152		332
2024-05-09 11:45:00		135	48	0	183	0 0	Ö	-	0 3	-		0 40	0	0	3	79	70	152		375
2024-05-09 12:00:00		126	57	0	183	0 0	Ö		0 5			0 31	0	0	2	73	83	158		372
2024-05-09 12:15:00		148	34	0	182	0 0	Ö		0 2			0 21	0	0	4	90	92	186	-	389
2024-05-09 12:30:00		184	22	0	206	0 0	Ö	0	0 2	_		0 28	0	0	2	102	91	195		429
2024-05-09 12:45:00		172	49	0	221	0 0	Ō	0	0 3			0 20	0	0	4	74	69	147) 0	388
2024-05-09 13:00:00		154	50	0	204	0 0	0	0	0 2	2	25	0 27	0	0	3	84	68	155) 0	386
2024-05-09 13:15:00		144	39	0	183	0 0	0	0	0 6		14	0 20	0	0	3	104	63	170	0	373
2024-05-09 13:30:00		137	42	0	179	0 0	0	0	0 5	5	20	0 25	0	0	4	94	55	153	0	357
2024-05-09 13:45:00		118	43	0	161	0 0	0	0	0 7		28	0 35	0	0	2	77	68	147	0	343
2024-05-09 14:00:00		140	37	0	177	0 0	0	0	0 5	5	23	0 28	0	0	2	90	69	161	0	366
2024-05-09 14:15:00		147	25	0	172	0 0	0	0	0 4	1	31	0 35	0	0	5	89	76	170	0	377
2024-05-09 14:30:00		142	23	0	165	0 0	0	0	0 7	7	24	0 31	0	0	2	85	93	180	0	376
2024-05-09 14:45:00		126	38	0	164	0 0	0	0	0 6	3	25	0 31	0	0	2	94	122	218	0	413
2024-05-09 15:00:00		164		0	209	0 0	0	0	0 7			0 35	0	0	4	105	95	204	,	448
2024-05-09 15:15:00		146		0	193	0 0	0	0	0 5	5		0 32	0	0	2	108	159	269	0	494
2024-05-09 15:30:00		159		0	219	0 0	0	0	0 8	-		0 27	0	0	3	110	96	209	-	455
2024-05-09 15:45:00		151		0	193	0 0	0	0 (0 8			0 47	0	0	1	107	133	241	0	481
2024-05-09 16:00:00		168		0	228	0 0	0	0 (0 4	1		0 31	0	0	3	80	133	216	0	475
2024-05-09 16:15:00		220	49	0	269	0 0	0	0	0 9		17	0 26	0	0	3	84	130	217	0	512
2024-05-09 16:30:00		196	38	0	234	0 0	0	0	0 1		30	0 31	0	0	6	103	119	228	0	493
2024-05-09 16:45:00		225 183	48 37	0	273 220	0 0	0	0	0 5)	28 18	0 33 0 19	0	0	0	92 98	85	177 (199 () 0	483
2024-05-09 17:00:00 2024-05-09 17:15:00		218	62	0	280	0 0	0	0	0 3	l 5	18	0 21	0	0	2	99	101 88	189	-	438 490
2024-05-09 17:15:00		183	37	0	220	0 0	0	0	0 5			0 27	0	0	2	107	108	217		464
2024-05-09 17:45:00		160	37	0	197	0 0	0	0	0 2)	24	0 26	0	0	2	75	91	168		391
2024-05-09 18:00:00		154	30	0	184	0 0	Ö	0	0 4	1		0 24	0	0	1	69	86	156		364
2024-05-09 18:15:00		134	32	0	166	0 0	Ö	0	0 5	_	17	0 22	0	0	0	80	89	169		357
2024-05-09 18:30:00		105		0	137	0 0	Ō	0	0 4	1		0 9	0	0	0	50	66	116) ()	262
2024-05-09 18:45:00		101		0	125	0 0	Ō	0	0 4	1		0 17	0	0	0	49	53	102) 0	244
2024-05-09 19:00:00		128	21	0	149	0 0	0	0	0 0)	7	0 7	0	0	0	37	50	87	0	243
2024-05-09 19:15:00		92	5	0	97	0 0	0	0	0 2	2	6	0 8	0	0	0	49	45	94	0	199
2024-05-09 19:30:00		73	14	0	87	0 0	0	0	0 2	2	6	0 8	0	0	0	33	47	80	0	175
2024-05-09 19:45:00		60	15	0	75	0 0	0	0	0 4	1	10	0 14	0	0	0	42	28	70	0	159
2024-05-09 20:00:00		97	18	0	115	0 0	0	0	0 2	2	7	0 9	0	0	0	27	33	60	0	184
2024-05-09 20:15:00		78	13	0	91	0 0	0	0	0 0)	3	0 3	0	0	1	16	25	42	0	136
2024-05-09 20:30:00		69	11	0	80	0 0	0	0	0 2	2	5	0 7	0	0	0	20	26	46	0	133
2024-05-09 20:45:00		53	11	0	64	0 0	0	0	0 1	I	4	0 5	0	0	0	10	25	35	0	104
2024-05-09 21:00:00		62	9	0	71	0 0	0	0	0 1	1	2	0 3	0	0	1	23	30	54	0	128
2024-05-09 21:15:00		43	6	0	49	0 0	0	0	0 4	1	1	0 5	0	0	0	24	24	48	0	102
2024-05-09 21:30:00		32	3	0	35	0 0	0	0 (0 2	-	1	0 3	0	0	1	13	19	33 (0	71
2024-05-09 21:45:00		27	4	0	31	0 0	0	0	0 2	-	0	0 2	0	0	0	13	12	25	0	58
2024-05-11 06:00:00		23	10	0	33	0	0	U	0 2	-	4	0 6	0	0	1	48	19	68	0	107
2024-05-11 06:15:00		24	9	0	33	0 0	0	U	0 3	5 -	0	0 3	0	0	0	58	31	89	0	125
2024-05-11 06:30:00		29	10 8	0	39 39	0 0	0	0	U 5	1	4	0 9	0	0	2	56	36	94 (0	142
2024-05-11 06:45:00 2024-05-11 07:00:00		31 36	8 7	0	39 43	0 0	0	0 (0 4	, 1	11	0 15 0 7	0	0	0 2	39 55	31 37	70 (94 (, 0	124 144
2024-05-11 07:00:00		40	16	0	43 56	0 0	0	0	0 1		7	0 8	0	0	2	58	39	99 (,	163
202.00 11 07.10.00		.0		-		0	•	- '	_			•	U	Ü	-	50	55		, 0	100

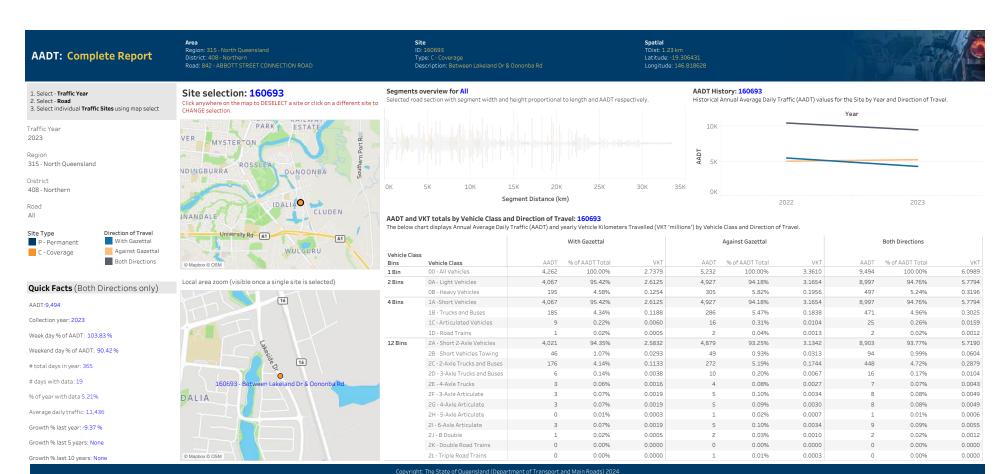
2024-05-11 07:30:00 2024-05-11 07:45:00 2024-05-11 08:00:00 2024-05-11 08:15:00 2024-05-11 08:30:00	51 77 66 75 75	8 19 12 23 29	0 0 0 0	59 96 78 98 104	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	6 3 4 5	11 25 22 32 26	0 0 0 0	17 28 26 37 28	0 0 0 0	0 0 0 0	2 0 1 0 3	69 72 67 77 79	62 71 90 59 79	133 143 158 136 161	0 0 0 0	0 0 0 0	209 267 262 271 293
2024-05-11 08:45:00 2024-05-11 09:00:00 2024-05-11 09:15:00 2024-05-11 09:30:00	114 121 135 149	29 37 26 21	0 0 0	143 158 161 170	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	7 6 4 8	24 30 26 38	0 0 0	31 36 30 46	0 0 0	0 0 0	2 2 1 1	88 108 93 105	91 58 76 94	181 168 170 200	0 0 0	0 0 0 1	355 362 361 416
2024-05-11 09:45:00 2024-05-11 10:00:00 2024-05-11 10:15:00 2024-05-11 10:30:00	147 162 178 175	40 37 37 47	0 0 0	187 199 215 222	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	8 8 4 4	44 35 41 36	0 0 0	52 43 45 40	0 0 0	0 0 0	1 1 1 2	82 96 95 86	99 80 91 92	182 177 187 180	0 0 0	0 0 0	421 419 447 442
2024-05-11 10:45:00 2024-05-11 11:00:00 2024-05-11 11:15:00 2024-05-11 11:30:00 2024-05-11 11:45:00	211 180 191 203 191	25 50 50 44 47	0 1 0 0	236 231 241 247 238	0 0 0 0	0 0 0	0 0 0 0	0	0 0	5 6 8 5 2	32 37 33 34 33	0 0 0 0	37 43 41 39 35	0 0 0	0	0 0 0 0	104 101 122 95 105	91 99 89 100 99	195 200 211 195 204	0 0 0	0 0 0	468 474 493 481 477
2024-05-11 12:00:00 2024-05-11 12:15:00 2024-05-11 12:30:00 2024-05-11 12:45:00	208 205 199 154	51 51 43 54	0 0 0	259 256 242 208	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	6 3 6 6	42 36 24 36	0 0 0 0	48 39 30 42	0 0 0	0 0 0	2 1 0 5	98 99 82 101	83 95 59 83	183 195 141 189	0 0 0	0 0 0	490 490 413 439
2024-05-11 13:00:00 2024-05-11 13:15:00 2024-05-11 13:30:00 2024-05-11 13:45:00	210 184 175 160	47 62 59 57	0 0 0	257 246 234 217	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	6 8 4 5	19 34 25 17	0 0 0	25 42 29 22	0 0 0	0 0 0 0	0 0 1 2	91 111 98 77	85 68 63 78	176 179 162 157	0 0 0	0 0 0 0	458 467 425 396
2024-05-11 14:00:00 2024-05-11 14:15:00 2024-05-11 14:30:00 2024-05-11 14:45:00 2024-05-11 15:00:00	176 176 183 172 170	49 54 61 57 47	0 0 0 0	225 230 244 229 217	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	4 1 3 3 8	32 30 26 26 38	0 0 0 0	36 31 29 29 46	0 0 0 0	0 0 0 0	2 8 6 4 2	79 89 96 88 86	58 79 81 60 69	139 176 183 152 157	0 0 0 0	0 0 0 0	400 437 456 410 420
2024-05-11 15:15:00 2024-05-11 15:30:00 2024-05-11 15:45:00 2024-05-11 16:00:00	157 168 159 169	59 34 29 37	0 0 0	216 202 188 206	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	4 3 1 8	21 26 22 20	0 0 0	25 29 23 28	0 0 0 0	0 0 0	1 0 1 1	96 82 77 90	81 69 87 73	178 151 165 164	0 0 0	0 0 0 0	419 382 376 398
2024-05-11 16:15:00 2024-05-11 16:30:00 2024-05-11 16:45:00 2024-05-11 17:00:00 2024-05-11 17:15:00	181 137 136 137 130	42 39 38 42 31	0 0 0 0	223 176 174 179 161	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 2 3 2 2	24 18 29 22 18	0 0 0 0	25 20 32 24 20	0 0 0 0	0 0 0 0	4 2 1 5 2	73 68 57 60 49	101 92 81 78 75	178 162 139 143 126	0 0 0 0	0 0 0 0	426 358 345 346 307
2024-05-11 17:30:00 2024-05-11 17:45:00 2024-05-11 18:00:00 2024-05-11 18:15:00	117 132 100 93	26 23 14 12	0 0 0 0	143 155 114 105	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	4 0 0 2	10 13 8 5	0 0 0 0	14 13 8 7	0 0 0	0 0 0	2 3 0	58 40 42 32	100 83 72 75	160 126 114 107	0 0 0	0 0 0	317 294 236 219
2024-05-11 18:30:00 2024-05-11 18:45:00 2024-05-11 19:00:00 2024-05-11 19:15:00 2024-05-11 19:30:00	62 71 67 71 59	9 9 5 17 7	0 0 0 0	71 80 72 88 66	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 5 3 2	10 8 4 6	0 0 0 0	11 8 9 9	0 0 0 0	0 0 0 0	1 0 1 1 0	26 39 38 29 27	79 70 55 48 36	106 109 94 78 63	0 0 0 0	0 0 0 0	188 197 175 175
2024-05-11 19:45:00 2024-05-11 19:45:00 2024-05-11 20:00:00 2024-05-11 20:15:00 2024-05-11 20:30:00	60 44 57 47	7 8 10 7	0 0 0	67 52 67 54	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	2 2 4 1	4 4 3 7	0 0 0 0	6 6 7 8	0 0 0	0 0 0	1 0 1 0	18 20 21 24	29 34 35 32	48 54 57 56	0 0 0	0 0 0	132 121 112 131 118
2024-05-11 20:45:00 2024-05-11 21:00:00 2024-05-11 21:15:00 2024-05-11 21:30:00	37 52 66 47	5 4 10 25	0 0 0	42 56 76 72	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	1 2 4 1	6 2 5 2	0 0 0	7 4 9 3	0 0 0 0	0 0 0	0 0 1 1	25 24 34 38	35 0 0	60 24 35 39	0 0 0	0 0 0	109 84 120 114
2024-05-11 21:45:00 Grand Total % Approach % Total Lights	15835 80.5% 37.7% 15441	16 3842 19.5% 9.2% 3549	0 1 0.0% 0.0% 1	19678 46.9% 18991	0	0	0 0 0.0% 0	0	0	0 515 17.2% 1.2% 361	2 2478 82.8% 5.9% 2383	0 1 0.0% 0.0% 1	2 2994 7.1% 2745	0	0	234 1.2% 0.6% 125	9710 50.3% 23.1% 8636	9359 48.5% 22.3% 9189	19303 46.0% 17950	2	3	89 41975 39686
% Lights Articulated Trucks % Articulated Trucks Buses and Single-Unit Trucks	97.5% 139 0.9% 245	92.4% 170 4.4% 121	100.0% 0 0.0% 0	96.5% 309 1.6% 366			0			70.1% 102 19.8% 51	96.2% 11 0.4% 80	100.0% 0 0.0% 0	91.7% 113 3.8% 131			53.4% 3 1.3% 106	88.9% 508 5.2% 562	98.2% 27 0.3% 139	93.0% 538 2.8% 807			94.5% 960 2.3% 1304
% Buses and Single-Unit Trucks Bicycles on Road % Bicycles on Road Pedestrians % Pedestrians	1.5% 10 0.1%	3.1% 2 0.1%	0.0% 0 0.0%	1.9% 12 0.1%	0	0	0	0	0	9.9% 1 0.2%	3.2% 4 0.2%	0.0% 0 0.0%	4.4% 5 0.2%	0	0	45.3% 0 0.0%	5.8% 4 0.0%	1.5% 4 0.0%	4.2% 8 0.0%	0	3 100.0%	3.1% 25 0.1%
% redestrians Bicycles on Crosswalk % Bicycles on Crosswalk					0.0%	0.0%		0.0%	0.0%					0.0%	0.0%					100.0%	0 0.0%	

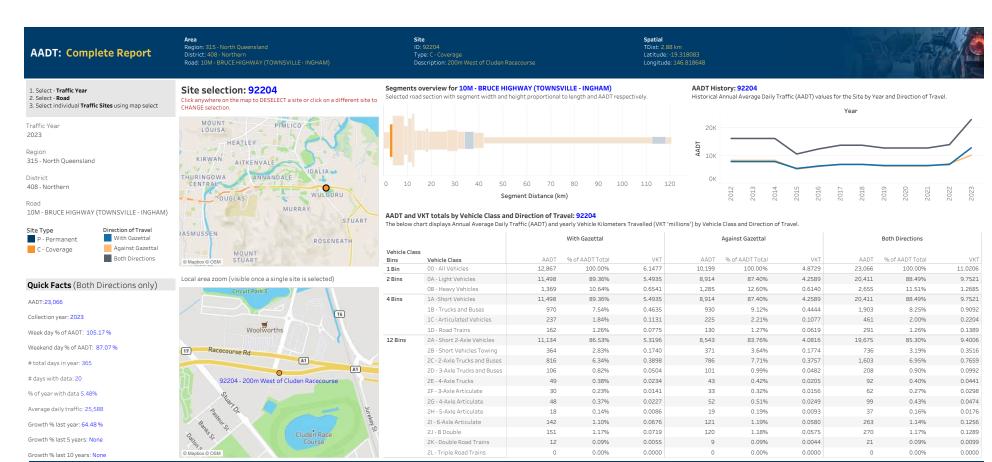
Leg Direction	Lakeside Dr Southbound			Racecourse F Westbound	Rd East			Turf Club Access Northbound			Raceco Eastbou	urse Rd West	
Start Time	Right Thru	U-Turn	App Total Peds CW	Peds CCW Right T	Thru Left	App Total Peds CV	V Peds CCW 1	Thru Left	U-Turn	App Total Peds CV	Peds CCW App To	tal Peds CW	Peds CCW Int Total
2024-05-09 06:00:00	- 58	0	0 58 0	0 7	67	1 75	1 0	0	2	0 2	0 0	0 0	0 135
2024-05-09 06:15:00	75	0	0 75 0	0 12	73	0 85	0 0	0	0	0 0	0 0	0 0	0 160
2024-05-09 06:30:00	89	1	0 90 0	0 11	99	1 111	0 0	1	2	0 3	0 0	0 0	0 204
2024-05-09 06:45:00	91	1	0 92 0	0 15	120	0 135	0 0	2	0	0 2	0 0	0 0	0 229
2024-05-09 07:00:00	102		0 102 0	0 16	87	2 105	0 0	_	-	0 0	0 0	0 0	0 207
2024-05-09 07:15:00	153		0 159 0	0 29	98	0 127	0 0			0 2	0 0	0 0	0 288
2024-05-09 07:30:00	145	-	0 148 0	0 24	137	1 162	0 0	0	-	0 0	0 0	0 0	0 310
2024-05-09 07:45:00	160		0 166 0	0 28	131	0 159	0 0			0 2	0 0	0 0	
2024-05-09 08:00:00	157	-	0 159 0	0 28	128	0 156	0 0	-	_	0 4	0 0	0 0	0 319
2024-05-09 08:15:00	129	_	0 132 0	0 48	133	0 181	0 0	•	-	0 1	0 0	0 0	0 314
2024-05-09 08:30:00	168	-	0 174 0	0 33	102	1 136	0 0	•	-	0 3	0 0	0 0	
2024-05-09 08:45:00	151	-	0 153 0	0 33	90	0 112	0 0	•	_	0 1	0 0	0 0	0 266
2024-05-09 09:00:00	139		0 143 0	0 30	81	0 111	0 0			0 1	0 0	0 0	
2024-05-09 09:15:00	117	-	0 119 0	0 34	84	0 118	0 0	•	-	0 3	0 0	0 0	0 240
2024-05-09 09:15:00	123	5	1 129 0	0 34	117	0 118 0 148	0 0	-	-	0 5	0 0	0 0	0 282
		-				0 146 0 123	0 0	4	-		0 0	•	
2024-05-09 09:45:00 2024-05-09 10:00:00	131 132		0 134 0 0 135 0	0 30	93 100	0 123 0 124		1	-			0 0	
	132	-					-		-	0 2	0 0	•	
2024-05-09 10:15:00	141			0 37	87		0 0		_	0 3	0 0	0 0	
2024-05-09 10:30:00		0		0 32	80	1 113	0 0	0	•	0 1	0 0	0 0	0 256
2024-05-09 10:45:00	111	-	0 111 0	0 26	86	0 112	0 0	-	_	0 2	0 0	0 0	0 225
2024-05-09 11:00:00	140		0 144 0	0 26	89	0 115	0 0	•	-	0 1	0 0	0 0	0 260
2024-05-09 11:15:00	149	3	1 153 0	0 20	80	0 100	0 0	2	-	0 5	0 0	0 0	0 258
2024-05-09 11:30:00	130		0 133 0	0 27	90	1 118	0 0	1	_	0 3	0 0	0 0	0 254
2024-05-09 11:45:00	135	-	0 140 0	0 32	64	0 96	0 0	2	•	0 3	0 0	0 0	0 239
2024-05-09 12:00:00	132	1	0 133 0	0 30	103	1 134	0 0	2	4	0 6	0 0	0 0	0 273
2024-05-09 12:15:00	147	-	0 150 0	0 20	94	0 114	0 0	2	2	0 4	0 0	0 0	0 268
2024-05-09 12:30:00	187	6	0 193 0	0 25	113	0 138	0 0	3	2	0 5	0 0	0 0	0 336
2024-05-09 12:45:00	173	1	0 174 0	0 22	84	1 107	0 0	1	1	0 2	0 0	0 0	0 283
2024-05-09 13:00:00	153	5	0 158 0	0 21	99	0 120	0 0	0	0	0 0	0 0	0 0	0 278
2024-05-09 13:15:00	139	2	0 141 0	0 20	84	0 104	0 0	1	0	0 1	0 0	0 0	0 246
2024-05-09 13:30:00	119	4	0 123 0	0 37	109	1 147	0 0	2	1	0 3	0 0	0 0	0 273
2024-05-09 13:45:00	119	0	0 119 0	0 29	102	0 131	0 0	1	0	0 1	0 0	0 0	0 251
2024-05-09 14:00:00	136	5	0 141 0	0 32	123	1 156	0 0	2	0	0 2	0 0	0 0	0 299
2024-05-09 14:15:00	151	2	0 153 0	0 26	129	0 155	0 0	1	2	0 3	0 0	0 0	0 311
2024-05-09 14:30:00	146	1	0 147 0	0 39	154	2 195	0 0	0	4	0 4	0 0	0 0	0 346
2024-05-09 14:45:00	139	4	0 143 0	0 30	142	1 173	0 0	2	2	0 4	0 0	0 0	0 320
2024-05-09 15:00:00	163	3	0 166 0	0 30	154	0 184	0 0	3	2	0 5	0 0	0 0	0 355
2024-05-09 15:15:00	158	2	0 160 0	0 31	191	2 224	0 0	1	2	0 3	0 0	0 0	0 387
2024-05-09 15:30:00	159	3	0 162 0	0 27	177	1 205	0 0	2	1	0 3	0 0	0 0	0 370
2024-05-09 15:45:00	166		0 170 0	0 47	155	0 202	0 0	1	1	0 2	0 0	0 0	0 374
2024-05-09 16:00:00	147	0	0 147 0	0 34	132	0 166	0 0	1	2	0 3	0 0	0 0	0 316
2024-05-09 16:15:00	247	-	0 248 0	0 26	178	0 204	0 0	0		0 5	0 0	0 0	0 457
2024-05-09 16:30:00	191		0 194 0	0 30	185	0 215	0 0	2		0 6	0 0	0 0	0 415
2024-05-09 16:45:00	225	-	0 225 0	0 29	156	0 185	0 0	_		0 2	0 0	0 1	0 412
2024-05-09 17:00:00	157	-	0 159 0	0 13	144	0 157	0 0			0 3	0 0	0 0	0 319
2024-05-09 17:15:00	192	_	0 194 0	0 28	130	1 159	0 0	-	-	0 5	0 0	0 0	0 358
2024-05-09 17:30:00	182		0 182 0	0 19	112	0 131	0 0	0		0 1	0 0	0 0	0 314
2024-05-09 17:45:00	140		0 140 0	0 26	100	0 126	0 0			0 1	0 0	0 0	0 267
2024-05-09 17:45:00	178		0 179 0	0 26	75	0 101	0 0	0		0 2	0 0	0 0	0 282
							0 0			0 1	0 0	0 0	
2024-05-09 18:15:00 2024-05-09 18:30:00	129 121		0 130 0 0 121 0	0 13 0 11	63 44	0 76 0 55	0 0			0 0	0 0	0 0	0 207 0 176
							0 0	0		0 0	0 0	0 0	
2024-05-09 18:45:00	113			0 15	30		0 0	0	-		0 0	0 0	0 158
2024-05-09 19:00:00	122		0 123 0	0 7	43	0 50	0 0	1		0 1	0 0	•	0 174
2024-05-09 19:15:00	94		0 94 0	0 8	10	0 18	0 0	-	-	0 0	0 0	0 0	0 112
2024-05-09 19:30:00	79		0 79 0	0 10	18	0 28	0 0			0 0	0 0	0 0	0 107
2024-05-09 19:45:00	60		0 60 0	0 12	27	0 39	0 0	-	-	0 0	0 0	0 0	0 99
2024-05-09 20:00:00	85		0 85 0	0 10	23	0 33	0 0			0 0	0 0	0 0	0 118
2024-05-09 20:15:00	74		0 74 0	0 4	5	0 9	0 0			0 0	0 0	0 0	0 83
2024-05-09 20:30:00	71		0 71 0	0 5	15	0 20	0 0		-	0 0	0 0	0 0	0 91
2024-05-09 20:45:00	47	0	0 47 0	0 7	19	0 26	0 0			0 0	0 0	0 0	0 73
2024-05-09 21:00:00	71	0	0 71 0	0 3	21	0 24	0 0	0	0	0 0	0 0	0 0	0 95
2024-05-09 21:15:00	37	0	0 37 0	0 4	21	0 25	0 0	0	0	0 0	0 0	0 0	0 62
2024-05-09 21:30:00	39	0	0 39 0	0 2	13	0 15	0 0	0	0	0 0	0 0	0 0	0 54
2024-05-09 21:45:00	26	0	0 26 0	0 2	25	0 27	0 0	0	0	0 0	0 0	0 0	0 53
2024-05-11 06:00:00	24	2	0 26 0	0 2	30	0 32	0 0	1	0	0 1	0 0	0 0	0 59
2024-05-11 06:15:00	25	0	0 25 0	0 4	42	0 46	0 0	1	1	0 2	0 0	0 0	0 73
2024-05-11 06:30:00	33	1	0 34 0	0 10	57	1 68	0 0	3	3	0 6	0 0	0 0	0 108
2024-05-11 06:45:00	27	1	0 28 0	0 12	28	0 40	0 0	0		0 1	0 0	0 0	0 69
2024-05-11 07:00:00	38	3	0 41 0	0 8	38	0 46	0 0	0	2	0 2	0 0	0 0	0 89
2024-05-11 07:15:00	41	3	0 44 0	0 5	37	0 42	0 0	1	0	0 1	0 0	0 0	

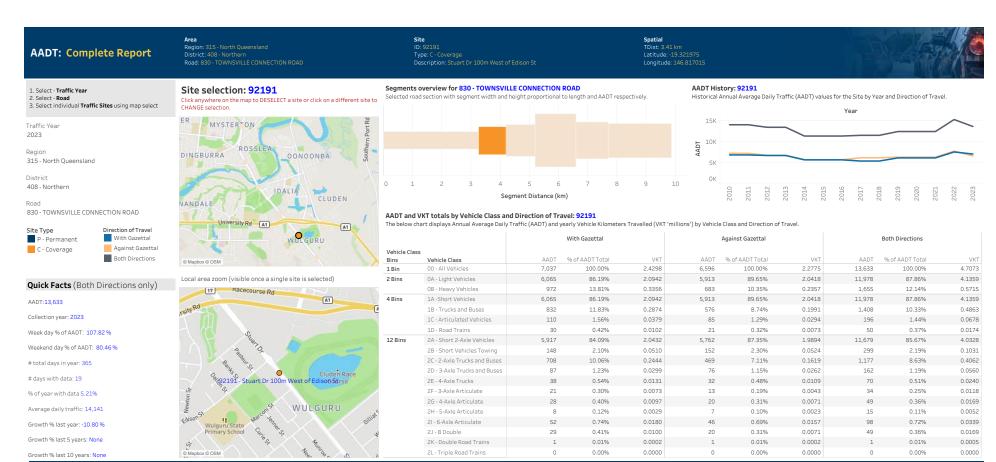
2024-05-11 07:30:00 2024-05-11 08:15:00 2024-05-11 08:15:00 2024-05-11 08:15:00 2024-05-11 08:15:00 2024-05-11 09:15:00 2024-05-11 09:15:00 2024-05-11 09:30:00 2024-05-11 10:15:00 2024-05-11 10:15:00 2024-05-11 10:15:00 2024-05-11 10:15:00 2024-05-11 10:15:00 2024-05-11 10:15:00 2024-05-11 10:15:00 2024-05-11 11:00:00 2024-05-11 11:00:00 2024-05-11 11:00:00 2024-05-11 11:00:00 2024-05-11 11:00:00 2024-05-11 11:00:00 2024-05-11 12:00:00 2024-05-11 12:00:00 2024-05-11 13:30:00 2024-05-11 13:30:00 2024-05-11 13:30:00 2024-05-11 13:30:00 2024-05-11 13:45:00 2024-05-11 13:45:00 2024-05-11 13:45:00 2024-05-11 13:45:00 2024-05-11 13:45:00 2024-05-11 13:45:00 2024-05-11 13:45:00 2024-05-11 13:45:00 2024-05-11 13:45:00 2024-05-11 16:50:00 2024-05-11 16:50:00 2024-05-11 16:50:00 2024-05-11 16:50:00 2024-05-11 16:30:00 2024-05-11 16:30:00 2024-05-11 16:30:00 2024-05-11 16:30:00 2024-05-11 16:30:00 2024-05-11 16:30:00 2024-05-11 16:30:00 2024-05-11 16:30:00 2024-05-11 16:30:00 2024-05-11 18:30:00 2024-0	49 66 77 85 74 103 135 115 170 136 162 184 170 207 179 197 204 193 204 213 206 158 216 205 199 178 169 169 169 169 169 179 171 150 153 132 138 142 141 119 112 96 6 77 71 66 6 75 75 55 56 46 36 47 71 67 57 51 55 55 56 46 36 47 67 57 51 55 55 55 56 46 36 47 67 57 51 55 55 56 46 36 47 67 57 51 55 56 46 36 47 67 57 51 55 56 46 36 47 67 57 51 55 56 46 36 47 67 57 51 55 55 56 46 36 47 67 57 51 55 56 46 36 47 67 57 51 55 56 46 36 47 67 57 51 55 56 46 36 47 67 57 51 55 56 46 36 47 67 57 51 55 56 46 36 47 67 57 51 55 56 46 36 47 67 57 51 55 56 46 36 47 67 57 51 55 56 46 36 47 67 57 51 55 56 46 36 47 67 57 51 55 56 46 36 47 67 57 51 55 56 46 36 47 67 57 51 55 56 46 36 47 67 57 51 55 56 57 57 51 55 56 57 57 51 55 56 67 57 51 58 67 67 57 51 58 67 67 67 57 51 58 67 67 57 51 58 67 67 67 57 51 58 67 67 67 57 51 58 67 67 67 67 67 67 67 67 67 67 67 67 67	1 0 0 0 0 3 3 1 1 4 4 0 0 0 0 1 1 0 0 0 0 0 1 1 5 5 1 1 7 7 7 3 0 0 0 0 1 1 5 5 1 1 7 7 5 1 1 4 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 66 77 85 77 104 139 115 171 136 188 171 207 195 207 195 207 213 206 162 216 206 168 179 185 181 176 178 188 149 173 155 158 133 147 115 113 113 115 115 117 117 117 117 117 117			23 27 32 31 28 30 35 55 50 32 40 39 41 38 42 41 38 50 6 35 37 27 34 23 35 28 32 33 35 28 32 33 35 31 37 37 37 37 38 40 39 39 40 40 40 40 40 40 40 40 40 40	57 52 63 85 91 82 99 92 1111 91 100 88 82 87 99 94 81 107 94 48 41 104 173 97 88 91 103 63 91 63 91 65 75 75 77 88 70 65 77 88 70 70 70 70 70 70 70 70 70 70 70 70 70	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80 79 91 113 121 117 161 128 128 128 129 121 131 120 121 131 120 123 121 131 133 129 121 131 133 129 121 131 133 120 121 131 133 120 121 131 131 133 120 121 131 131 132 127 131 131 133 129 121 131 131 133 120 120 121 131 131 132 120 121 131 131 131 132 120 120 123 121 131 131 132 120 120 121 131 131 131 142 146 146 146 146 147 148 149 149 149 149 149 149 149 149			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 0 0 0 2 2 4 1 1 0 0 2 2 1 1 0 0 0 0 2 2 1 1 0 0 0 1 1 1 1						130 145 169 179 190 225 258 249 319 297 289 304 330 304 338 349 329 339 346 340 284 351 413 320 305 308 304 294 320 175 266 272 252 263 226 247 243 200 175 163 112 98 120 90 86 75 95 75 66 82 279 88 94 94 70 29678
Lights % Lights Articulated Trucks % Articulated Trucks Buses and Single-Unit Trucks	15590 97.5% 146 0.9%	159 66.3% 5 2.1% 76	5 100.0% 0 0.0%	15754 97.0% 151 0.9% 331	1 100.0% 0 0.0%	0 0.0% 0 0.0%	2678 92.7% 108 3.7% 94	9283 90.4% 448 4.4% 524	28 82.4% 0 0.0%	11989 90.9% 556 4.2% 624	0 0.0% 1 100.0%	0 0.0% 0 0.0%	79 76.7% 1 1.0% 22	86 60.6% 5 3.5% 50	0 0.0% 0 0.0%	165 67.3% 6 2.4% 72	0 0.0% 0 0.0%	0 0.0% 0 0.0%	0	1 50.0% 1 50.0%	0 0.0% 0 0.0%	94.0% 713 2.4% 1027

Leg Direction	Stuart Dr North Southbound					Stuart [Or South					Edison St Eastbound	i						
Start Time	Right Thru	U-Turn	App Tota	Peds CW	Peds CCW		Left	U-Turn	App Total	al Peds CW	Peds CCW		Left	U-Turn	App Total	Peds CW	Peds CCW	Int Total	
2024-05-09 06:00:00	10	89	1 10	00	0	0	65	2	0	67	0 0)	3	14	0 17	() (184	
2024-05-09 06:15:00	6	131	4 14	1 1	0	0	79	3	0	82	0 0)	6	15	0 21	1		244	
2024-05-09 06:30:00	2	172	1 17		0	0	134	5			0 (0 19				
2024-05-09 06:45:00	6	150	1 15		0	0	96	1			0 0)			0 21	() (
2024-05-09 07:00:00	10	108	1 11				129	2			0 0				0 29			279	
2024-05-09 07:15:00	8	115	1 12				139	6			0 0				0 40	2		309	
2024-05-09 07:30:00	9	117	3 12				167	6			0 (0 51	2		353	
2024-05-09 07:45:00	14	126	3 14			-	164	7	-		0 0				0 53	(
								-								(2 (
2024-05-09 08:00:00 2024-05-09 08:15:00	24 21	123 129	2 1 4				198 169	10 12			0 (0 61 0 49	3			
2024-05-09 08:15:00	14		1 15			-	153				0 (-	* *		(*	364	
		137						12					-						
2024-05-09 08:45:00	25	111	1 13				116	9			0 (0 45	(308	
2024-05-09 09:00:00	18	108	0 12				126	5			0 (0 42	1		299	
2024-05-09 09:15:00	20	119	2 14				113	5			0 0				0 23	1	(
2024-05-09 09:30:00	16	105	0 12		_		120	3			0 0				0 36	(280	
2024-05-09 09:45:00	15	97	1 11		_		122	8			0 0				1 22	1		265	
2024-05-09 10:00:00	9	124	0 13		_		124	6			0 (0 28	() (291	
2024-05-09 10:15:00	14	105	1 12	20	0	0	114	3	0 1	17	0 ()	7	21	0 28	()	1 265	
2024-05-09 10:30:00	21	106	2 12	29	0	0	119	3	0 1	22	0 0)	1	20	0 21	1		272	
2024-05-09 10:45:00	13	105	1 11	19	0	0	126	1	0 1	27	0 0)	3	18	0 21	() (267	
2024-05-09 11:00:00	19	92	0 11	11	0	0	115	4	0 1	19	0 0)	2	18	0 20	()	1 250	
2024-05-09 11:15:00	16	111	3 13	30	0	0	116	3	0 1	19	0 0)	3	18	0 21	() (270	
2024-05-09 11:30:00	22	91	1 11	14	0	0	83	6	0	89	0 0)	8	13	0 21	() (224	
2024-05-09 11:45:00	29	114	0 14	13	0	0	109	9	0 1	18	0 0)	5	19	0 24	() (285	
2024-05-09 12:00:00	16	124	0 14	10	0	0	119	3	0 1	22	0 0)	6	25	0 31	() (293	
2024-05-09 12:15:00	17	114	0 13		0		116	5			0 0)			0 24	()		
2024-05-09 12:30:00	21	117	3 14	11	0	0	98	6	0 1	04	0 0)	6	13	0 19	() (264	
2024-05-09 12:45:00	11	125	0 13		0	0	105	6			0 0)			0 18	() (265	
2024-05-09 13:00:00	16	121	1 13				109	7			0 0				0 15	(
2024-05-09 13:15:00	18	108	1 12		_	-	101	4			0 0				0 20	,		2 252	
2024-05-09 13:30:00	17	114	2 13		_	-	102	1	-		0 0		-		0 20				
2024-05-09 13:45:00	14	108	1 12			-	102	3			0 (•		1 24	(252	
2024-05-09 14:00:00	17	127	0 14				141	2			0 0				0 22				
2024-05-09 14:15:00	24	109	0 13				128	9			0 0				0 30	(
2024-05-09 14:13:00	21	112	0 13		•	0	126	12			0 (0 30	(*		
2024-05-09 14:45:00	41	122	1 16		_		141	22	-		0 (-		0 27		(
	32	174	2 20				152	9			0 (_		0 20	(2 429	
2024-05-09 15:00:00								7			0 (2			
2024-05-09 15:15:00	31	171	2 20			-	119	-	-						0 41			371	
2024-05-09 15:30:00	32	184	2 2 1				158	11			0 (1 28	(
2024-05-09 15:45:00	33	175	1 20				151	9			0 (0 41	(
2024-05-09 16:00:00	30	147	3 18					11			0 (0 27	2		394	
2024-05-09 16:15:00	31	157	0 18				153	9			0 (0 30	(381	
2024-05-09 16:30:00	40	158	4 20				173	5			0 (0 33	(413	
2024-05-09 16:45:00	47	153	5 20				156	17			0 (0 30	(408	
2024-05-09 17:00:00	38	160	0 19				194	11			0 0				0 36	1		439	
2024-05-09 17:15:00	33	148	6 18				148	2			0 (0 31	1			
2024-05-09 17:30:00	30	148	4 18				127	2			0 0				0 23	1	1		
2024-05-09 17:45:00	32	137	4 17				107	6			0 0				0 45	(
2024-05-09 18:00:00	27	114	5 14				130	2			0 (0 35	2		313	
2024-05-09 18:15:00	18	107	5 13	30	0	0	117	3	0 1	20	0 0)	8	20	0 28	()	1 278	
2024-05-09 18:30:00	27	98	1 12	26	0	0	109	5			0 0				0 20	(
2024-05-09 18:45:00	32	74	4 11		_	0	81	3	-		0 0				0 13	(
2024-05-09 19:00:00	19	69	0 8	38	0	0	43	4	0	47	0 0)	2	15	0 17	() (152	
2024-05-09 19:15:00	19	70	5 9	94	0	0	50	5	0	55	0 0)	2	8	0 10	() (159	
2024-05-09 19:30:00	17	61	2 8	30	0	0	37	1	0	38	0 0)	2	10	0 12	() (130	
2024-05-09 19:45:00	9	44	1 5	54	0	0	33	3	0	36	0 0)	1	4	0 5	()	1 95	
2024-05-09 20:00:00	12	49			0	0	30	0			0 0)	4	10	0 14	2	2 (
2024-05-09 20:15:00	11	30	0 4	1 1	0	0	16	1	0	17	0 0)	0	2	0 2	1		60	
2024-05-09 20:30:00	10	49	1 6	60	0	0	25	0	0	25	0 0)	0	3	0 3	() (88	

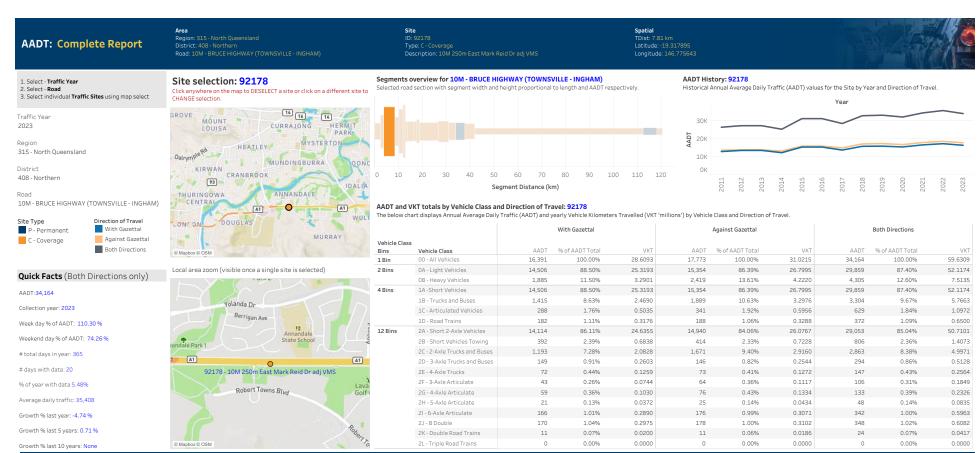
2024-05-09 20:45:00	7	35	1	43	0	0	29	0	0	29	0	0	0	4	0	4	0	0	76
2024-05-09 21:00:00	6	42	0	48	0	0	23	0	0	23	0	0	1	2	0	3	0	0	74
2024-05-09 21:15:00	4	32	0	36	0	0	17	1	0	18	0	0	2	5	0	7	0	0	61
2024-05-09 21:30:00	4	25	1	30	0	0	15	2	0	17	0	0	1	2	0	3	0	1	50
2024-05-09 21:45:00	4	18	1	23	0	0	22	2	0	24	0	0	0	18	0	18	0	0	65
2024-05-11 06:00:00	4	61	0	65	0	0	8	2	0	10	0	0	1	6	0	7	1	1	82
2024-05-11 06:15:00	1	68	0	69	0	0	33	0	1	34	0	0	0	5	0	5	0	1	108
2024-05-11 06:30:00	2	99	0	101	0	0	62	1	0	63	0	0	2	9	0	11	0	0	175
2024-05-11 06:45:00	1	95	1	97	0	0	55	2	0	57	0	0	3	8	0	11	0	1	165
2024-05-11 07:00:00	1	55	0	59	0	0	59	1	0	60	0	0	1	9	0	10	1	1	129
2024-05-11 07:00:00	3	54	1	58	0	0	58	1	0	59	0	0	3	9	0	12	0	0	129
	7		0		0	0		3	0			0	0	•			0	0	179
2024-05-11 07:30:00	, 5	75 74	0	82 79	0	0	71	3 4	0	74 109	0	0	4	23 24	0	23 28	0	0	
2024-05-11 07:45:00	-		-		-	_	105	•	-		-	-	4		-			-	216
2024-05-11 08:00:00	11	72	1	84	0	0	80	2	0	82	0	0	•	18	0	22	0	0	188
2024-05-11 08:15:00	10	95	0	105	0	0	99	4	0	103	0	0	6	13	1	20	0	1	228
2024-05-11 08:30:00	17	84	0	101	0	0	122	2	0	124	0	0	2	21	0	23	0	1	248
2024-05-11 08:45:00	26	79	0	105	0	0	101	2	0	103	0	0	11	34	0	45	0	0	253
2024-05-11 09:00:00	19	100	2	121	0	0	147	3	0	150	0	0	6	23	0	29	0	0	300
2024-05-11 09:15:00	16	102	1	119	0	0	118	5	2	125	0	0	6	32	0	38	0	0	282
2024-05-11 09:30:00	17	105	0	122	0	0	140	2	0	142	0	0	3	35	0	38	0	0	302
2024-05-11 09:45:00	21	114	2	137	0	0	162	0	0	162	0	0	5	31	0	36	1	0	335
2024-05-11 10:00:00	20	117	1	138	0	0	136	4	0	140	0	0	6	28	0	34	1	0	312
2024-05-11 10:15:00	22	120	0	142	0	0	153	2	0	155	0	0	4	39	0	43	0	0	340
2024-05-11 10:30:00	17	152	0	169	0	0	115	6	0	121	0	0	4	31	0	35	2	0	325
2024-05-11 10:45:00	21	122	0	143	0	0	153	3	0	156	0	0	3	32	0	35	0	0	334
2024-05-11 11:00:00	19	119	0	138	0	0	139	9	0	148	0	0	1	26	0	27	0	1	313
2024-05-11 11:15:00	25	116	0	141	0	0	143	5	0	148	0	0	6	28	0	34	0	0	323
2024-05-11 11:30:00	25	150	0	175	0	0	134	4	0	138	0	0	5	37	0	42	0	0	355
2024-05-11 11:45:00	21	150	2	173	0	0	102	5	1	108	0	0	4	49	0	53	0	2	334
2024-05-11 12:00:00	22	130	1	153	0	0	121	7	0	128	0	0	7	25	0	32	1	0	313
2024-05-11 12:15:00	32	131	3	166	0	0	109	4	0	113	0	0	7	27	0	34	0	0	313
2024-05-11 12:30:00	31	120	1	152	0	0	104	2	0	106	0	0	2	18	0	20	0	0	278
2024-05-11 12:45:00	30	118	1	149	0	0	117	2	0	119	0	0	2	15	0	17	1	1	285
2024-05-11 12:45:00	26	122	1	149	0	0	96	3	0	99	0	0	4	20	0	24	0	0	272
2024-05-11 13:05:00	23	140	1	164	0	0	101	4	0	105	0	0	7	12	0	19	0	1	288
			0		0	0		4	-		0	0	4		1		0	0	
2024-05-11 13:30:00	17	111		128			117		0	121		-	· ·	26	· ·	31	-		280
2024-05-11 13:45:00	20	113	0	133	0	0	99	4	0	103	0	0	8	28	0	36	0	0	272
2024-05-11 14:00:00	15	107	3	125	0	0	110	7	1	118	0	0	2	17	0	19	0	0	262
2024-05-11 14:15:00	28	98	0	126	0	0	106	4	0	110	0	0	1	19	0	20	0	0	256
2024-05-11 14:30:00	17	107	1	125	0	0	107	4	0	111	0	0	6	22	0	28	0	1	264
2024-05-11 14:45:00	32	97	0	129	0	0	101	6	0	107	0	0	8	18	0	26	0	0	262
2024-05-11 15:00:00	31	97	2	130	0	0	102	4	0	106	0	0	3	24	0	27	0	0	263
2024-05-11 15:15:00	22	93	0	115	0	0	87	4	0	91	0	0	2	21	0	23	0	0	229
2024-05-11 15:30:00	18	109	1	128	0	0	84	3	0	87	0	0	5	20	0	25	0	0	240
2024-05-11 15:45:00	18	96	0	114	0	0	81	9	0	90	0	0	5	26	0	31	0	0	235
2024-05-11 16:00:00	21	105	0	126	0	0	77	2	0	79	0	0	3	19	0	22	1	0	227
2024-05-11 16:15:00	10	107	1	118	0	0	88	6	0	94	0	0	6	16	0	22	0	0	234
2024-05-11 16:30:00	22	114	1	137	0	0	88	5	0	93	0	0	8	30	0	38	0	0	268
2024-05-11 16:45:00	22	99	2	123	0	0	108	7	0	115	0	0	6	22	0	28	0	0	266
2024-05-11 17:00:00	20	82	0	102	0	0	71	5	0	76	0	0	3	24	0	27	0	0	205
2024-05-11 17:15:00	20	104	0	124	0	0	98	5	1	104	0	0	3	19	0	22	1	0	250
2024-05-11 17:30:00	24	103	1	128	0	0	108	5	0	113	0	0	2	22	0	24	2	2	265
2024-05-11 17:45:00	26	68	2	96	0	0	72	1	0	73	0	0	7	13	0	20	0	1	189
2024-05-11 18:00:00	20	82	1	103	0	0	69	3	0	72	0	0	5	12	0	17	1	2	192
2024-05-11 18:15:00	11	78	3	92	0	0	70	4	1	75	0	0	1	16	0	17	1	0	184
2024-05-11 18:30:00	12	66	3	81	0	0	103	4	0	107	0	0	4	18	0	22	0	0	210
2024-05-11 18:45:00	11	54	3	68	0	0	78	2	0	80	0	0	2	13	0	15	1	0	163
2024-05-11 19:00:00	7	52	2	61	0	0	51	1	0	52	0	0	1	16	0	17	0	1	130
2024-05-11 19:15:00	10	50	0	60	0	0	54	3	0	57	0	0	2	8	0	10	0	0	127
2024-05-11 19:30:00	5	46	1	52	0	0	26	4	0	30	0	0	6	12	0	18	0	0	100
2024-05-11 19:45:00	10	41	0	51	0	0	42	3	0	45	0	0	0	10	0	10	0	0	106
2024-05-11 19:45:00	12	37	0	49	0	0	42	1	0	43	0	0	2	9	0	11	0	0	103
2027-00-11 20.00.00	12	31	U	73	U	U	74	'	U	43	J	J	4	J	J	• • •	U	U	103


2024-05-11 20:15:00	6	39	1	46	0	0	21	0	0	21	0	0	2	4	0	6	0	0	73
2024-05-11 20:30:00	6	28	0	34	0	0	31	3	0	34	0	0	0	12	0	12	0	0	80
2024-05-11 20:45:00	4	30	0	34	0	0	36	6	0	42	0	0	4	7	0	11	0	0	87
2024-05-11 21:00:00	9	25	2	36	0	0	34	1	0	35	0	0	2	3	0	5	0	0	76
2024-05-11 21:15:00	5	45	0	50	0	0	30	1	0	31	0	0	0	5	0	5	0	0	86
2024-05-11 21:30:00	7	32	2	41	0	0	26	1	0	27	0	0	1	5	0	6	3	0	74
2024-05-11 21:45:00	3	34	0	37	0	0	25	1	0	26	0	0	1	3	0	4	0	3	67
Grand Total	2248	12703	155	15106	0	0	12560	559	13	13132	0	0	534	2577	5	3116	51	46	31354
% Approach	14.9%	84.1%	1.0%				95.6%	4.3%	0.1%				17.1%	82.7%	0.2%				
% Total	7.2%	40.5%	0.5%	48.2%			40.1%	1.8%	0.0%	41.9%			1.7%	8.2%	0.0%	9.9%			
Lights	2197	11944	147	14288			11761	533	13	12307			510	2512	5	3027			29622
% Lights	97.7%	94.0%	94.8%	94.6%			93.6%	95.3%	100.0%	93.7%			95.5%	97.5%	100.0%	97.1%			94.5%
Articulated Trucks	0	198	0	198			208	0	0	208			2	6	0	8			414
% Articulated Trucks	0.0%	1.6%	0.0%	1.3%			1.7%	0.0%	0.0%	1.6%			0.4%	0.2%	0.0%	0.3%			1.3%
Buses and Single-Unit Trucks	49	532	8	589			558	23	0	581			21	56	0	77			1247
% Buses and Single-Unit Trucks	2.2%	4.2%	5.2%	3.9%			4.4%	4.1%	0.0%	4.4%			3.9%	2.2%	0.0%	2.5%			4.0%
Bicycles on Road	2	29	0	31			33	3	0	36			1	3	0	4			71
% Bicycles on Road	0.1%	0.2%	0.0%	0.2%			0.3%	0.5%	0.0%	0.3%			0.2%	0.1%	0.0%	0.1%			0.2%
Pedestrians					0	0					0	0					31	30	
% Pedestrians					0.0%	0.0%					0.0%	0.0%					60.8%	65.2%	
Bicycles on Crosswalk					0	0					0	0					20	16	
% Bicycles on Crosswalk					0.0%	0.0%					0.0%	0.0%					39.2%	34.8%	


Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden


Appendix C TMR 2023 road link count data

Document Set IDR264t 85660-RP02-A Version: 1, Version Date: 24/10/2024



Copyright: The State of Queensland (Department of Transport and Main Roads) 202

Copyright: The State of Queensland (Department of Transport and Main Roads) 202

opyright: The State of Queensland (Department of Transport and Main Roads) 2024

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

Appendix D SIDRA outputs (existing)

Document Set IDR264t 85660-RP02-A Version: 1, Version Date: 24/10/2024

Site: 101 [Racecourse_Lakeside_Existing_2024_AM (WEST) (Site Folder: Existing - Racecourse Rd / Lakeside Dr)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Racecourse_Lakeside_Townsv ille Turf Club
Access_Existing_2024_AM
(Network Folder: Existing)]

2024 Background Traffic Volumes

Site Category: Base Year

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Vehic	cle Mo	ovemen	t Perform	ance									
Mov ID	Turn	Mov Class			Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lake	eside Dr (S)										
2	T1 R2	All MCs All MCs			0.085 * 0.264	39.5 70.7	LOS D LOS E	3.4 1.2	24.7 11.1	1.00 1.00	0.65 0.72	1.00 1.00	20.1 4.2
Appro	ach		140 9.1	140 9.1	0.264	44.0	LOS D	3.4	24.7	1.00	0.66	1.00	17.3
North	Lake	side Dr (I	N)										
7	L2	All MCs	85 11.1	85 11.1	0.180	41.3	LOS D	3.8	29.1	0.80	0.75	0.80	16.3
8	T1	All MCs	640 4.4	640 4.4	* 0.614	41.0	LOS D	16.4	119.2	0.93	0.80	0.93	16.4
Appro	ach		725 5.2	725 5.2	0.614	41.0	LOS D	16.4	119.2	0.91	0.79	0.91	16.4
West:	Race	course D	r (W)										
10	L2	All MCs	739 2.0	739 2.0	0.575	5.9	LOSA	9.2	66.6	0.28	0.60	0.28	50.3
11	T1	All MCs	481 14.7	481 14.7	* 0.575	14.1	LOS B	9.2	66.6	0.50	0.50	0.50	41.6
12	R2	All MCs	22 47.6	22 47.6	0.030	20.6	LOS C	0.6	6.0	0.50	0.66	0.50	36.4
Appro	ach		1242 7.7	1242 7.7	0.575	9.3	LOSA	9.2	66.6	0.37	0.56	0.37	47.1
All Ve	hicles		2107 6.9	2107 6.9	0.614	22.5	LOS C	16.4	119.2	0.60	0.65	0.60	33.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab)

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mov	vement	Perforr	nance							
Mov ID Crossing	Dem.	Aver.	Level of			Prop.	Eff.	Travel	Travel	Aver.
ID Crossing	Flow	Delay	Service	QUE [Ped	Dist]	Que	Stop Rate	Time	DIST.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
West: Racecours	e Dr (W)									
P4 Full	5	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96
All Pedestrians	5	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [Racecourse_Lakeside_Existing_2024_PM (WEST) (Site Folder: Existing - Racecourse Rd / Lakeside Dr)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

2024 Background Traffic Volumes

Site Category: Base Year

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Vehic	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lake	eside Dr (S)												
2	T1 R2	All MCs All MCs		3.9 36.8	107 203	3.9 36.8	0.052 * 0.272	26.1 70.6	LOS C LOS E	2.8 1.2	20.6 11.5	0.93 1.00	0.47 0.72	0.93 1.00	25.9 4.2
Appro	ach		127	9.1	127	9.1	0.272	33.1	LOS C	2.8	20.6	0.94	0.51	0.94	20.8
North	: Lake	side Dr (l	N)												
7	L2	All MCs	205	4.6	205	4.6	0.258	28.6	LOS C	7.5	54.4	0.67	0.76	0.67	21.2
8	T1	All MCs	852	1.9	852	1.9	* 0.504	25.9	LOS C	17.8	126.9	0.77	0.68	0.77	22.5
Appro	ach		1057	2.4	1057	2.4	0.504	26.4	LOS C	17.8	126.9	0.75	0.69	0.75	22.1
West:	Race	course D	r (W)												
10	L2	All MCs	492	0.9	492	0.9	0.431	5.7	LOSA	4.5	32.1	0.23	0.56	0.23	50.9
11	T1	All MCs	378	9.2	378	9.2	* 0.431	22.9	LOS C	9.7	73.1	0.62	0.61	0.62	34.6
12	R2	All MCs	13	75.0	13	75.0	0.029	33.0	LOS C	0.5	5.5	0.67	0.67	0.67	29.4
Appro	ach		882	5.5	882	5.5	0.431	13.5	LOS B	9.7	73.1	0.40	0.59	0.40	43.5
All Ve	hicles		2066	4.2	2066	4.2	0.504	21.3	LOS C	17.8	126.9	0.61	0.64	0.61	32.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab)

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mov	vement	Perforr	nance							
Mov ID Crossing	Dem.	Aver.	Level of			Prop.	Eff.	Travel	Travel	Aver.
ID Crossing	Flow	Delay	Service	QUE [Ped	Dist]	Que	Stop Rate	Time	DIST.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
West: Racecours	e Dr (W)									
P4 Full	5	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96
All Pedestrians	5	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [Racecourse_Lakeside_Existing_2024_Weekend (WEST) (Site Folder: Existing - Racecourse Rd / Lakeside Dr)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■■ Network: N101
[Racecourse_Lakeside_Townsv
ille Turf Club
Access_Existing_2024_Weeken

d (Network Folder: Existing)]

2024 Background Traffic Volumes

Site Category: Base Year

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Vehic	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lake	eside Dr (S)												
2 3 Appro	T1 R2 ach	All MCs All MCs		14.3		2.1 14.3 3.7	0.067 * 0.262 0.262	23.3 70.3 29.4	LOS C LOS E	3.9 1.4 3.9	28.0 10.7 28.0	0.91 1.00 0.92	0.43 0.72 0.47	0.91 1.00 0.92	27.6 4.2 22.8
North	: Lake	side Dr (l	N)												
7 8	L2 T1	All MCs All MCs			202 835	5.2 0.6	0.234 * 0.445	24.7 21.7	LOS C LOS C	6.8 15.9	49.6 111.6	0.62 0.71	0.74 0.62	0.62 0.71	23.0 24.9
Appro	ach		1037	1.5	1037	1.5	0.445	22.3	LOS C	15.9	111.6	0.69	0.64	0.69	24.5
West:	Race	course D	r (W)												
10	L2	All MCs	391	2.8	391	2.8	0.380	5.7	LOSA	3.8	27.0	0.25	0.56	0.25	50.8
11	T1	All MCs	442	4.5	442	4.5	* 0.380	27.1	LOS C	10.3	75.1	0.68	0.64	0.68	32.2
12	R2	All MCs	2	0.0	2	0.0	0.004	34.9	LOS C	0.1	0.6	0.70	0.62	0.70	28.2
Appro	ach		835	3.7	835	3.7	0.380	17.1	LOS B	10.3	75.1	0.48	0.60	0.48	40.5
All Ve	hicles		2043	2.6	2043	2.6	0.445	20.7	LOS C	15.9	111.6	0.62	0.61	0.62	32.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab)

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mov	vement	Perforr	nance							
Mov ID Crossing	Dem.	Aver.	Level of			Prop.	Eff.	Travel	Travel	Aver.
ID Crossing	Flow	Delay	Service	QUE [Ped	Dist]	Que	Stop Rate	Time	DIST.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
West: Racecours	e Dr (W)									
P4 Full	5	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96
All Pedestrians	5	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [Racecourse_Lakeside_Townsville Turf Club Access_Existing_2024_AM (Site Folder: Existing - Racecourse

Rd / Lakeside Dr)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Racecourse_Lakeside_Townsv ille Turf Club
Access_Existing_2024_AM

(Network Folder: Existing)]

2024 Background traffic volumes

Site Category: Base Year

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Vehic	cle M	ovement	Perforr	nance									
Mov ID	Turn	Mov Class		/s Flov /] [Total H\	vs Satn		Level of Service	95% Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Towr	nsville Tur	f Club Ac	cess (S)									
1 2	L2 T1	All MCs All MCs	7 57 3 66				LOS A LOS D	0.1 0.1	0.8 0.9	0.23 0.93	0.57 0.57	0.23 0.93	45.6 9.3
Appro	ach		11 60	.0 11 60	.0 0.016	22.1	LOS C	0.1	0.9	0.44	0.57	0.44	33.2
East:	Raced	course Dr	(E)										
4	L2	All MCs	1 0	.0 1 0	.0 0.001	5.9	LOSA	0.0	0.0	0.10	0.56	0.10	49.7
5	T1	All MCs	520 14	.0 520 14	.0 * 0.436	33.5	LOS C	11.9	92.9	0.83	0.71	0.83	38.8
6	R2	All MCs	144 8	.8 144 8	.8 0.248	36.8	LOS D	6.1	45.9	0.77	0.76	0.77	27.5
Appro	ach		665 12	.9 665 12	.9 0.436	34.2	LOS C	11.9	92.9	0.82	0.72	0.82	36.9
North	: Lake	side Dr (N	۷)										
8	T1	All MCs	18 23	.5 18 23	.5 * 0.436	0.7	LOSA	0.7	5.0	0.04	0.55	0.04	43.6
9	R2	All MCs	646 5	.0 646 5	.0 0.436	5.9	LOSA	0.9	6.9	0.05	0.56	0.05	48.3
Appro	ach		664 5	.5 664 5	.5 0.436	5.7	LOSA	0.9	6.9	0.04	0.56	0.04	48.2
All Ve	hicles		1340 9	.6 1340 9	.6 0.436	20.0	LOS B	11.9	92.9	0.43	0.64	0.43	40.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab)

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mov	vement	Perforr	nance							
Mov ID Crossing	Dem.	Aver.				Prop.	Eff.	Travel	Travel	Aver.
ID Crossing	Flow	Delay	Service	QUE [Ped	Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
West: Racecourse	e Dr (W)									
P4 Full	53	54.3	LOS E	0.2	0.2	0.95	0.95	208.1	200.0	0.96
All Pedestrians	53	54.3	LOS E	0.2	0.2	0.95	0.95	208.1	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [Racecourse_Lakeside_Townsville Turf Club Access_Existing_2024_PM (Site Folder: Existing - Racecourse

Rd / Lakeside Dr)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Racecourse_Lakeside_Townsv ille Turf Club
Access_Existing_2024_PM

(Network Folder: Existing)]

2024 Background traffic volumes

Site Category: Base Year

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Vehic	Vehicle Movement Performance Mov Turn Mov Demand Arrival Deg. Aver. Level of 95% Back Of Queue Prop. Eff. Aver. Aver.														
Mov ID	Turn	Mov Class	FI	lows HV]		ows	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Towr	nsville Tui	rf Club	Acce	ss (S)										
1 2	L2 T1	All MCs All MCs		35.7 0.0		35.7 0.0	0.035 0.006	9.8 53.4	LOS A LOS D	0.2 0.1	1.9 0.4	0.30 0.93	0.60 0.55	0.30 0.93	44.9 9.5
Appro	ach		17	31.2	17	31.2	0.035	15.3	LOS B	0.2	1.9	0.38	0.60	0.38	39.8
East:	Raced	course Dr	(E)												
4	L2	All MCs	1	0.0	1	0.0	0.001	5.9	LOSA	0.0	0.0	0.10	0.56	0.10	49.7
5	T1	All MCs	698	7.4	698	7.4	* 0.563	35.3	LOS D	16.7	124.6	0.88	0.76	0.88	38.1
6	R2	All MCs	103	5.1	103	5.1	0.173	35.8	LOS D	4.2	31.0	0.75	0.75	0.75	27.9
Appro	ach		802	7.1	802	7.1	0.563	35.3	LOS D	16.7	124.6	0.86	0.76	0.86	37.1
North	Lake	side Dr (N	۷)												
8	T1	All MCs	6	66.7	6	66.7	* 0.560	1.8	LOSA	2.5	18.1	0.11	0.59	0.11	41.0
9	R2	All MCs	863	2.0	863	2.0	0.560	7.1	LOSA	3.4	24.5	0.13	0.60	0.13	47.0
Appro	ach		869	2.5	869	2.5	0.560	7.1	LOSA	3.4	24.5	0.13	0.60	0.13	47.0
All Ve	hicles		1688	5.0	1688	5.0	0.563	20.6	LOS C	16.7	124.6	0.48	0.67	0.48	40.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab)

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mov	vement	Perforr	nance							
Mov Crossing	Dem.	Aver.				Prop.	Eff.	Travel	Travel	Aver.
ID Crossing	Crossing Flow Delay Serv				EUE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
West: Racecourse	e Dr (W)									
P4 Full	53	54.3	LOS E	0.2	0.2	0.95	0.95	208.1	200.0	0.96
All Pedestrians	53	54.3	LOS E	0.2	0.2	0.95	0.95	208.1	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [Racecourse_Lakeside_Townsville Turf Club Access_Existing_2024_Weekend (Site Folder: Existing -

Racecourse Rd / Lakeside Dr)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■■ Network: N101 [Racecourse_Lakeside_Townsv ille Turf Club

Access_Existing_2024_Weeken d (Network Folder: Existing)]

2024 Background traffic volumes

Site Category: Base Year

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Vehic	Vehicle Movement Performance Mov Turn Mov Demand Arrival Deg. Aver. Level of 95% Back Of Queue Prop. Eff. Aver. Aver.														
Mov ID	Turn	Mov Class	F	lows HV]		ows	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Towr	nsville Tui	rf Club	Acce	ss (S)										
1 2	L2 T1	All MCs All MCs		33.3 0.0		33.3 0.0	0.012 0.012	7.8 53.7	LOS A LOS D	0.1 0.1	0.5 0.8	0.22 0.93	0.57 0.57	0.22 0.93	46.8 9.4
Appro	ach		11	20.0	11 :	20.0	0.012	26.1	LOS C	0.1	8.0	0.50	0.57	0.50	30.0
East:	Raced	course Dr	(E)												
4	L2	All MCs	1	0.0	1	0.0	0.001	5.9	LOSA	0.0	0.0	0.10	0.56	0.10	49.7
5	T1	All MCs	479	2.9	479	2.9	* 0.455	38.8	LOS D	11.6	83.5	0.88	0.74	0.88	36.7
6	R2	All MCs	140	5.3	140	5.3	0.284	42.4	LOS D	6.4	47.2	0.83	0.78	0.83	25.3
Appro	ach		620	3.4	620	3.4	0.455	39.6	LOS D	11.6	83.5	0.87	0.75	0.87	34.7
North	Lake	side Dr (N	٧)												
8	T1	All MCs	5	0.0	5	0.0	* 0.465	0.7	LOSA	0.9	6.2	0.04	0.57	0.04	43.4
9	R2	All MCs	826	0.6	826	0.6	0.465	5.7	LOSA	1.0	6.7	0.04	0.57	0.04	48.7
Appro	ach		832	0.6	832	0.6	0.465	5.6	LOSA	1.0	6.7	0.04	0.57	0.04	48.7
All Ve	hicles		1462	1.9	1462	1.9	0.465	20.2	LOS C	11.6	83.5	0.39	0.65	0.39	40.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab)

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mov	vement	Perforr	nance							
Mov Crossing	Dem.	Aver.				Prop.	Eff.	Travel	Travel	Aver.
ID Crossing	Crossing Flow Delay Serv				EUE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	sec		ped	m			sec	m	m/sec
West: Racecourse	e Dr (W)									
P4 Full	53	54.3	LOS E	0.2	0.2	0.95	0.95	208.1	200.0	0.96
All Pedestrians	53	54.3	LOS E	0.2	0.2	0.95	0.95	208.1	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

♥ Site: 101 [Stuart_Edison_Existing_2024_AM (Site Folder:

Existing - Stuart Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

2024 Background Traffic Volumes Site Category: Base Year

Roundabout

		ovement								2.70/					
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of lueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Stua	rt Dr (S)													
1	L2	All MCs	43	14.6	43	14.6	0.589	6.3	LOSA	5.4	40.6	0.42	0.49	0.42	54.5
2	T1	All MCs	720	8.3	720	8.3	0.589	6.6	LOSA	5.4	40.6	0.42	0.49	0.42	56.5
3u	U	All MCs	1	0.0	1	0.0	0.589	11.9	LOS B	5.4	40.6	0.42	0.49	0.42	57.6
Appro	ach		764	8.6	764	8.6	0.589	6.6	LOSA	5.4	40.6	0.42	0.49	0.42	56.4
North:	: Stuar	t Dr (N)													
8	T1	All MCs	542	10.3	542	10.3	0.433	5.9	LOSA	3.9	29.5	0.20	0.50	0.20	56.6
9	R2	All MCs	77	2.7	77	2.7	0.433	9.4	LOSA	3.9	29.5	0.20	0.50	0.20	55.0
9u	U	All MCs	11	0.0	11	0.0	0.433	11.3	LOS B	3.9	29.5	0.20	0.50	0.20	58.2
Appro	ach		629	9.2	629	9.2	0.433	6.5	LOSA	3.9	29.5	0.20	0.50	0.20	56.4
West:	Ediso	n St (W)													
10	L2	All MCs	196	2.1	196	2.1	0.372	10.9	LOS B	2.4	17.2	0.83	0.78	0.84	51.1
12	R2	All MCs	24	0.0	24	0.0	0.372	14.7	LOS B	2.4	17.2	0.83	0.78	0.84	51.1
12u	U	All MCs	1	0.0	1	0.0	0.372	16.5	LOS B	2.4	17.2	0.83	0.78	0.84	48.7
Appro	ach		221	1.9	221	1.9	0.372	11.4	LOS B	2.4	17.2	0.83	0.78	0.84	51.0
All Ve	hicles		1615	7.9	1615	7.9	0.589	7.2	LOSA	5.4	40.6	0.39	0.53	0.39	55.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GELEON | Licence: NETWORK / 1PC | Processed: Tuesday, 6 August 2024 10:02:51 AM

Project: P:\50890 BNC (1-105 Racecourse Rd, Cluden)\02. D&D\05. SIDRA\Masterplan\Existing_Bruce Hwy_Lakeside Dr_Townsville Turf Club Access Stuart Dr.sip9

♥ Site: 101 [Stuart_Edison_Existing_2024_PM (Site Folder:

Existing - Stuart Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

2024 Background Traffic Volumes Site Category: Base Year Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Stua	rt Dr (S)													
1	L2	All MCs	44	0.0	44	0.0	0.644	6.9	LOSA	6.0	43.3	0.61	0.56	0.61	54.2
2	T1	All MCs	712	4.4	712	4.4	0.644	7.5	LOSA	6.0	43.3	0.61	0.56	0.61	56.6
3u	U	All MCs	1	0.0	1	0.0	0.644	12.8	LOS B	6.0	43.3	0.61	0.56	0.61	56.7
Appro	oach		757	4.1	757	4.1	0.644	7.5	LOSA	6.0	43.3	0.61	0.56	0.61	56.4
North	ı: Stuaı	t Dr (N)													
8	T1	All MCs	661	3.9	661	3.9	0.544	5.9	LOSA	5.9	42.3	0.22	0.50	0.22	58.0
9	R2	All MCs	164	0.6	164	0.6	0.544	9.4	LOSA	5.9	42.3	0.22	0.50	0.22	54.9
9u	U	All MCs	9	0.0	9	0.0	0.544	11.3	LOS B	5.9	42.3	0.22	0.50	0.22	58.0
Appro	oach		835	3.2	835	3.2	0.544	6.6	LOSA	5.9	42.3	0.22	0.50	0.22	57.3
West	: Ediso	n St (W)													
10	L2	All MCs	115	6.4	115	6.4	0.244	10.3	LOS B	1.5	11.1	0.80	0.76	0.80	50.5
12	R2	All MCs	21	0.0	21	0.0	0.244	13.8	LOS B	1.5	11.1	0.80	0.76	0.80	51.5
12u	U	All MCs	1	0.0	1	0.0	0.244	15.6	LOS B	1.5	11.1	0.80	0.76	0.80	49.1
Appro	oach		137	5.4	137	5.4	0.244	10.9	LOS B	1.5	11.1	0.80	0.76	0.80	50.6
All Ve	ehicles		1728	3.8	1728	3.8	0.644	7.3	LOSA	6.0	43.3	0.44	0.55	0.44	56.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GELEON | Licence: NETWORK / 1PC | Processed: Tuesday, 6 August 2024 10:16:03 AM Project: P:\50890 BNC (1-105 Racecourse Rd, Cluden)\02. D&D\05. SIDRA\Masterplan\Existing_Bruce Hwy_Lakeside Dr_Townsville Turf Club Access Stuart Dr.sip9

Site: 101 [Stuart_Edison_Existing_2024_Weekend (Site

Folder: Existing - Stuart Drive)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

2024 Background Traffic Volumes Site Category: Base Year

Roundabout

Vehicle Movement Performance Mov Turn Mov Demand Arrival Deg. Aver. Level of 95% Back Of Prop. Eff. Aver. Aver.															
Mov ID	Turn	Mov Class	F	lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of ueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Stua	rt Dr (S)													
1	L2	All MCs	24	8.7	24	8.7	0.445	6.1	LOSA	3.2	23.5	0.36	0.50	0.36	55.0
2	T1	All MCs	545	4.4	545	4.4	0.445	6.4	LOSA	3.2	23.5	0.36	0.50	0.36	57.7
3u	U	All MCs	1	0.0	1	0.0	0.445	11.8	LOS B	3.2	23.5	0.36	0.50	0.36	57.9
Appro	ach		571	4.6	571	4.6	0.445	6.4	LOSA	3.2	23.5	0.36	0.50	0.36	57.6
North:	: Stuai	rt Dr (N)													
8	T1	All MCs	563	2.8	563	2.8	0.429	5.8	LOSA	3.7	26.8	0.16	0.50	0.16	58.7
9	R2	All MCs	95	2.2	95	2.2	0.429	9.3	LOSA	3.7	26.8	0.16	0.50	0.16	55.3
9u	U	All MCs	2	0.0	2	0.0	0.429	11.2	LOS B	3.7	26.8	0.16	0.50	0.16	58.4
Appro	ach		660	2.7	660	2.7	0.429	6.3	LOSA	3.7	26.8	0.16	0.50	0.16	58.2
West:	Ediso	n St (W)													
10	L2	All MCs	147	0.7	147	0.7	0.224	8.3	LOSA	1.3	9.2	0.67	0.70	0.67	53.3
12	R2	All MCs	17	12.5	17	12.5	0.224	12.8	LOS B	1.3	9.2	0.67	0.70	0.67	50.3
12u	U	All MCs	1	0.0	1	0.0	0.224	13.9	LOS B	1.3	9.2	0.67	0.70	0.67	50.5
Appro	ach		165	1.9	165	1.9	0.224	8.8	LOSA	1.3	9.2	0.67	0.70	0.67	53.0
All Ve	hicles		1396	3.4	1396	3.4	0.445	6.7	LOSA	3.7	26.8	0.30	0.52	0.30	57.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GELEON | Licence: NETWORK / 1PC | Processed: Tuesday, 6 August 2024 10:19:35 AM

Project: P:\50890 BNC (1-105 Racecourse Rd, Cluden)\02. D&D\05. SIDRA\Masterplan\Existing_Bruce Hwy_Lakeside Dr_Townsville Turf Club Access Stuart Dr.sip9

Site: 101 [Racecourse_Lakeside_Existing_2029_AM (WEST)

(Site Folder: Existing - Racecourse Rd / Lakeside Dr)]
Output produced by SIDRA INTERSECTION Version: 9.1.6.228

2024 Background Traffic Volumes

Site Category: Base Year

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Design Life Analysis (Final Year): Results for 5 years

Vehic	cle M	ovemen	t Performa	nce		Vehicle Movement Performance Mov Turn Mov Demand Arrival Deg. Aver. Level of 95% Back Of Queue Prop. Eff. Aver. Aver.														
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h							
South	South: Lakeside Dr (S)																			
2 3 Appro	T1 R2 bach	All MCs All MCs	132 5.3 22 31.6 155 9.1	132 5.3 22 31.6 155 9.1	0.094 * 0.291 0.291	39.7 70.9 44.2	LOS D LOS E LOS D	3.7 1.4 3.7	27.3 12.3 27.3	1.00 1.00 1.00	0.65 0.72 0.66	1.00 1.00 1.00	20.0 4.2 17.2							
North	North: Lakeside Dr (N)																			
7 8 Appro	L2 T1 pach	All MCs All MCs	94 11.1 707 4.4 801 5.2	94 11.1 707 4.4 801 5.2	0.199 * 0.685 0.685	44.2 43.3 43.4	LOS D LOS D	4.2 18.8 18.8	32.4 136.3 136.3	0.81 0.95 0.94	0.76 0.82 0.81	0.81 0.95 0.94	16.2 16.1 15.7							
West	: Race	course D	r (W)																	
10 11 12	L2 T1 R2	All MCs All MCs All MCs	816 2.0 531 14.7 24 47.6	816 2.0 531 14.7 24 47.6	0.637 * 0.637 0.034	6.0 14.8 20.6	LOS A LOS B LOS C	13.1 13.1 0.7	94.8 94.8 6.7	0.35 0.53 0.50	0.62 0.52 0.66	0.35 0.53 0.50	49.9 41.3 36.4							
Appro			1371 7.7	1371 7.7	0.637	9.7	LOSA	13.1	94.8	0.42	0.58	0.42	46.7							
All Ve	hicles		2327 6.9	2327 6.9	0.685	23.6	LOS C	18.8	136.3	0.64	0.67	0.64	33.0							

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mov	vement	Perforr	nance							
Mov ID Crossing	Dem. Aver. Crossing Flow Delay			AVERAGE QUE		Prop. Que	Eff. Stop	Travel Time	Travel Dist.	Aver. Speed
				[Ped	Dist]		Rate			
	ped/h	sec		ped	m			sec	m	m/sec
West: Racecours	e Dr (W)									
P4 Full	6	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96
All Pedestrians	6	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [Racecourse_Lakeside_Existing_2029_PM (WEST)

(Site Folder: Existing - Racecourse Rd / Lakeside Dr)]
Output produced by SIDRA INTERSECTION Version: 9.1.6.228

2024 Background Traffic Volumes

Site Category: Base Year

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Design Life Analysis (Final Year): Results for 5 years

Vehic	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows	Flo	rival ows	Deg. Satn	Aver. Delay	Level of Service	95% Back		Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			veh/h		[Total I veh/h	1V J %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	South: Lakeside Dr (S)														
2	T1	All MCs	119	3.9	119	3.9	0.057	25.7	LOS C	3.1	22.7	0.93	0.46	0.93	26.2
3	R2	All MCs	22	36.8	22 3	86.8	* 0.300	70.8	LOS E	1.4	12.7	1.00	0.72	1.00	4.2
Appro	ach		141	9.1	141	9.1	0.300	32.8	LOS C	3.1	22.7	0.94	0.51	0.94	21.0
North	North: Lakeside Dr (N)														
7	L2	All MCs	227	4.6	227	4.6	0.280	30.1	LOS C	8.2	60.0	0.67	0.76	0.67	21.4
8	T1	All MCs	940	1.9	940	1.9	* 0.559	27.0	LOS C	20.6	146.7	0.79	0.70	0.79	22.4
Appro	ach		1167	2.4	1167	2.4	0.559	27.6	LOS C	20.6	146.7	0.77	0.71	0.77	21.5
West:	Race	course D	r (W)												
10	L2	All MCs	543	0.9	543	0.9	0.480	5.7	LOSA	5.5	39.3	0.24	0.56	0.24	50.9
11	T1	All MCs	417	9.2	417	9.2	* 0.480	23.4	LOS C	10.8	81.6	0.63	0.63	0.63	34.2
12	R2	All MCs	14	75.0	14 7	7 5.0	0.033	33.8	LOS C	0.5	6.1	0.68	0.67	0.68	29.1
Appro	ach		974	5.5	974	5.5	0.480	13.7	LOS B	10.8	81.6	0.41	0.59	0.41	43.4
All Ve	hicles		2281	4.2	2281	4.2	0.559	22.0	LOS C	20.6	146.7	0.63	0.65	0.63	32.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mov	vement	Perforr	nance							
Mov ID Crossing	Dem. Aver. Crossing Flow Delay			AVERAGE QUE		Prop. Que	Eff. Stop	Travel Time	Travel Dist.	Aver. Speed
				[Ped	Dist]		Rate			
	ped/h	sec		ped	m			sec	m	m/sec
West: Racecours	e Dr (W)									
P4 Full	6	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96
All Pedestrians	6	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [Racecourse_Lakeside_Existing_2029_Weekend (WEST) (Site Folder: Existing - Racecourse Rd / Lakeside Dr)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■■ Network: N101
[Racecourse_Lakeside_Townsville Turf Club
Access_Existing_2029_Weekend (Network Folder: Existing)]

2029 Background Traffic Volumes Site Category: Future Conditions 1

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase

Times)

Design Life Analysis (Final Year): Results for 5 years

Vehi	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows		rival ows HV]	Deg. Satn	Aver. Delay	Level of Service	95% Back [Veh.	Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Lake	eside Dr (S)												
2	T1	All MCs	165	2.1	165	2.1	0.074	23.4	LOS C	4.3	30.9	0.91	0.44	0.91	27.5
3	R2	All MCs	24	14.3	24 1	14.3	* 0.290	70.4	LOS E	1.5	11.9	1.00	0.73	1.00	4.2
Appro	oach		189	3.7	189	3.7	0.290	29.5	LOS C	4.3	30.9	0.92	0.47	0.92	22.8
North	: Lake	side Dr (I	N)												
7	L2	All MCs	223	5.2	223	5.2	0.258	25.7	LOS C	7.6	55.6	0.63	0.75	0.63	22.8
8	T1	All MCs	922	0.6	922	0.6	* 0.496	22.7	LOS C	18.3	128.5	0.73	0.65	0.73	24.5
Appro	oach		1145	1.5	1145	1.5	0.496	23.3	LOS C	18.3	128.5	0.71	0.67	0.71	23.9
West	Race	course D	r (W)												
10	L2	All MCs	431	2.8	431	2.8	0.419	5.7	LOSA	4.5	32.0	0.25	0.56	0.25	50.8
11	T1	All MCs	488	4.5	488	4.5	* 0.419	27.3	LOS C	11.6	84.1	0.69	0.65	0.69	32.1
12	R2	All MCs	2	0.0	2	0.0	0.004	34.9	LOS C	0.1	0.6	0.70	0.62	0.70	28.2
Appro	oach		922	3.7	922	3.7	0.419	17.2	LOS B	11.6	84.1	0.48	0.61	0.48	40.4
All Ve	hicles		2256	2.6	2256	2.6	0.496	21.3	LOS C	18.3	128.5	0.64	0.63	0.64	32.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

 $\label{eq:hv} \mbox{HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.}$

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mo	vement	Perform	nance							
Mov .	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID Crossing	Flow	Delay	Service	QUE		Que	Stop	Time	Dist.	Speed
				[Ped	Dist]		Rate			
	ped/h	sec		ped	m			sec	m	m/sec
West: Racecours	e Dr (W)									
P4 Full	6	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96
All Pedestrians	6	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [Racecourse_Lakeside_Townsville Turf Club

Access_Existing_2029_AM (Site Folder: Existing - Racecourse

Rd / Lakeside Dr)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

2024 Background traffic volumes

Site Category: Base Year

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Design Life Analysis (Final Year): Results for 5 years

Vehic	cle M	ovemen	t Perfori	mance										
Mov ID	Turn	Mov Class	Dema Flov [Total H)		rrival lows HV]	Deg. Satn	Aver. Delay	Level of Service	95% Back [Veh.	Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
				% veh/h	%	v/c	sec		veh	m				km/h
South	: Tow	nsville Tu	rf Club Ad	cess (S)										
1	L2	All MCs	8 57	'.1 8	57.1	0.019	8.6	LOSA	0.1	0.9	0.25	0.58	0.25	45.3
2	T1	All MCs	3 66	3.7	66.7	0.014	54.6	LOS D	0.1	1.0	0.93	0.58	0.93	9.3
Appro	ach		12 60	0.0 12	60.0	0.019	22.4	LOS C	0.1	1.0	0.45	0.58	0.45	33.0
East:	Race	course Dr	(E)											
4	L2	All MCs	1 0	0.0 1	0.0	0.001	5.9	LOSA	0.0	0.0	0.10	0.56	0.10	49.7
5	T1	All MCs	574 14	.0 574	14.0	* 0.482	34.1	LOS C	13.3	104.5	0.85	0.72	0.85	38.5
6	R2	All MCs	159 8	3.8 159	8.8	0.273	37.1	LOS D	6.8	51.2	0.78	0.77	0.78	27.4
Appro	ach		735 12	2.9 735	12.9	0.482	34.7	LOS C	13.3	104.5	0.83	0.73	0.83	36.7
North	: Lake	side Dr (l	٧)											
8	T1	All MCs	20 23	3.5 20	23.5	* 0.482	0.7	LOS A	8.0	5.9	0.04	0.55	0.04	43.5
9	R2	All MCs	714 5	5.0 714	5.0	0.482	5.9	LOSA	1.1	8.2	0.05	0.56	0.05	48.3
Appro	ach		733 5	5.5 733	5.5	0.482	5.7	LOSA	1.1	8.2	0.05	0.56	0.05	48.3
All Ve	hicles		1479 9	.6 1479	9.6	0.482	20.3	LOS C	13.3	104.5	0.44	0.65	0.44	40.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mo	vement	Perforr	nance							
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE		Prop. Que	Eff. Stop	Travel Time	Travel Dist.	Aver. Speed
				[Ped	Dist]		Rate			
	ped/h	sec		ped	m			sec	m	m/sec
West: Racecours	e Dr (W)									
P4 Full	58	54.3	LOS E ¹²	0.2	0.2	0.95	0.95	208.1	200.0	0.96
All Pedestrians	58	54.3	LOS E ¹²	0.2	0.2	0.95	0.95	208.1	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [Racecourse_Lakeside_Townsville Turf Club

Access_Existing_2029_PM (Site Folder: Existing - Racecourse

Rd / Lakeside Dr)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

2024 Background traffic volumes

Site Category: Base Year

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Design Life Analysis (Final Year): Results for 5 years

Vehic	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Towr	nsville Tui				/0	V/C	366		VEII	'''				KIII/II
1 2	L2 T1	All MCs All MCs		35.7 0.0		35.7 0.0	0.042 0.007	11.0 53.4	LOS B LOS D	0.3 0.1	2.5 0.4	0.34 0.93	0.61 0.55	0.34 0.93	43.9 9.5
Appro	oach		19	31.2	193	31.2	0.042	16.3	LOS B	0.3	2.5	0.42	0.61	0.42	39.1
East:	Raced	course Dr	(E)												
4	L2	All MCs	1	0.0	1	0.0	0.001	5.9	LOSA	0.0	0.0	0.10	0.56	0.10	49.7
5	T1	All MCs	771	7.4	771	7.4	* 0.621	36.2	LOS D	18.9	141.0	0.90	0.78	0.90	37.7
6	R2	All MCs	114	5.1	114	5.1	0.191	36.0	LOS D	4.7	34.4	0.75	0.75	0.75	27.8
Appro	oach		886	7.1	886	7.1	0.621	36.1	LOS D	18.9	141.0	0.88	0.78	0.88	36.8
North	: Lake	side Dr (N	۷)												
8	T1	All MCs	7	66.7	7 (66.7	* 0.618	2.2	LOSA	3.7	26.6	0.14	0.60	0.14	40.3
9	R2	All MCs	953	2.0	953	2.0	0.618	7.5	LOS A	4.8	33.8	0.16	0.61	0.16	46.7
Appro	oach		960	2.5	960	2.5	0.618	7.4	LOSA	4.8	33.8	0.16	0.61	0.16	46.6
All Ve	hicles		1864	5.0	1864	5.0	0.621	21.1	LOS C	18.9	141.0	0.51	0.69	0.51	40.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mov	vement	Perforr	nance							
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE		Prop. Que	Eff. Stop	Travel Time	Travel Dist.	Aver. Speed
	nod/b			[Ped	Dist]		Rate	222	100	mlaca
West: Racecourse	ped/h e Dr (W)	sec		ped	m			sec	m	m/sec
P4 Full	58	54.3	LOS E ¹²	0.2	0.2	0.95	0.95	208.1	200.0	0.96
All Pedestrians	58	54.3	LOS E ¹²	0.2	0.2	0.95	0.95	208.1	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [Racecourse_Lakeside_Townsville Turf Club Access_Existing_2029_Weekend (Site Folder: Existing -

Racecourse Rd / Lakeside Dr)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Racecourse_Lakeside_Townsv ille Turf Club
Access_Existing_2029_Weeken

d (Network Folder: Existing)]

2029 Background traffic volumes Site Category: Future Conditions 1

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase

Times)

Design Life Analysis (Final Year): Results for 5 years

Vehic	cle M	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl Total veh/h	ows HV]	FI	rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Towi	nsville Tur	f Club	Acces	ss (S)										
1 2 Appro	L2 T1 ach	All MCs All MCs	5	33.3 0.0 20.0	5	33.3 0.0 20.0	0.015 0.013 0.015	8.1 53.7 26.4	LOS A LOS D LOS C	0.1 0.1 0.1	0.7 0.9 0.9	0.24 0.93 0.51	0.58 0.58 0.58	0.24 0.93 0.51	46.5 9.4 29.8
		course Dr	(E)												
4	L2	All MCs	1	0.0	1	0.0	0.001	5.9	LOSA	0.0	0.0	0.10	0.56	0.10	49.7
5	T1	All MCs	529	2.9	529	2.9	* 0.502	39.5	LOS D	13.0	93.6	0.89	0.76	0.89	36.5
6	R2	All MCs	155	5.3	155	5.3	0.314	42.8	LOS D	7.2	52.6	0.84	0.78	0.84	25.2
Appro	ach		685	3.4	685	3.4	0.502	40.2	LOS D	13.0	93.6	0.88	0.76	0.88	34.5
North	: Lake	side Dr (N	1)												
8	T1	All MCs	6	0.0	6	0.0	* 0.513	0.7	LOS A	1.1	7.5	0.04	0.57	0.04	43.4
9	R2	All MCs	912	0.6	912	0.6	0.513	5.6	LOS A	1.1	7.5	0.04	0.57	0.04	48.7
Appro	ach		918	0.6	918	0.6	0.513	5.6	LOSA	1.1	7.5	0.04	0.57	0.04	48.7
All Ve	hicles		1614	1.9	1614	1.9	0.513	20.4	LOS C	13.0	93.6	0.40	0.65	0.40	39.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mo	vement	Perforr	nance							
Mov _	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID Crossing	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist.	Speed
				[Ped	Dist]		Rate			
	ped/h	sec		ped	m			sec	m	m/sec
West: Racecours	e Dr (W)									
P4 Full	58	54.3	LOS E ¹²	0.2	0.2	0.95	0.95	208.1	200.0	0.96
All Pedestrians	58	54.3	LOS E ¹²	0.2	0.2	0.95	0.95	208.1	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Traffic Impact Assessment

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

Appendix E SIDRA outputs (development)

Document Set IDR264t 85660-RP02-A Version: 1, Version Date: 24/10/2024

Site: 101 [Racecourse_Lakeside_Development_2029_AM (WEST) (Site Folder: Development- Racecourse Rd / Lakeside

Dr)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■■ Network: N101 [Racecourse_Lakeside_Townsv ille Turf Club

Access_Development_2029_AM (Network Folder: Existing)]

2029 Development Traffic Volumes Site Category: Future Conditions 1

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase

Times)

Design Life Analysis (Final Year): Results for 5 years

Vehic	cle M	ovemen	t Perforn	nance									
Mov ID	Turn	Mov Class		rs Flow] [Total HV	s Satn	Delay	Level of Service	95% Back [Veh. veh	c Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lake	eside Dr (
2	T1 R2	All MCs All MCs					LOS C LOS E	4.0 2.3	28.7 18.8	0.65 1.00	0.53 0.75	0.65 1.00	26.9 4.2
Appro	ach		257 5	5 257 5	5 0.450	31.2	LOS C	4.0	28.7	0.70	0.56	0.70	21.8
North	: Lake	side Dr (l	N)										
7	L2	All MCs	94 11	1 94 11	1 0.199	58.6	LOS E	4.2	32.4	0.81	0.76	0.81	16.2
8	T1	All MCs	1030 3	0 1030 3	0 *1.018	110.1	LOS F	45.8	332.6	1.00	1.39	1.58	7.9
Appro	ach		1124 3	7 1124 3	7 1.018	105.8	LOS F	45.8	332.6	0.98	1.33	1.51	7.6
West:	Race	course D	r (W)										
10	L2	All MCs	816 2	0 816 2	0 0.647	6.1	LOSA	14.8	106.8	0.38	0.64	0.38	49.7
11	T1	All MCs	531 14	7 531 14	7 * 0.647	15.2	LOS B	14.8	106.8	0.54	0.52	0.54	41.2
12	R2	All MCs	36 32	3 36 32	3 0.045	20.5	LOS C	1.0	9.0	0.51	0.67	0.51	36.4
Appro	ach		1383 7	7 1383 7	7 0.647	10.0	LOSA	14.8	106.8	0.45	0.60	0.45	46.5
All Ve	hicles		2764 5	8 2764 5	8 1.018	50.9	LOS D	45.8	332.6	0.69	0.89	0.90	21.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mo	vement	Perform	nance							
Mov .	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID Crossing	Flow	Delay	Service	QUE		Que	Stop	Time	Dist.	Speed
				[Ped	Dist]		Rate			
	ped/h	sec		ped	m			sec	m	m/sec
West: Racecours	e Dr (W)									
P4 Full	6	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96
All Pedestrians	6	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [Racecourse_Lakeside_Townsville Turf Club Access_Development_2029_AM (Site Folder: Development-

Racecourse Rd / Lakeside Dr)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■■ Network: N101 [Racecourse_Lakeside_Townsv ille Turf Club Access_Development_2029_AM

(Network Folder: Existing)]

2029 Development Traffic Volumes Site Category: Future Conditions 1

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase

Times)

Design Life Analysis (Final Year): Results for 5 years

Vehic	le M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]	FI	rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Tow	nsville Tu	rf Club	Acces	ss (S)										
1 2	L2 T1	All MCs All MCs		1.9 2.2	246 106	1.9 2.2	0.402 * 0.300	10.0 56.8	LOS A LOS E ¹¹	4.6 3.0	32.8 21.3	0.40 0.97	0.68 0.73	0.40 0.97	45.9 9.0
Appro	ach		352	2.0	352	2.0	0.402	24.0	LOS C	4.6	32.8	0.57	0.70	0.57	32.9
East:	Race	course Dr	(E)												
4	L2	All MCs	21	0.0	21	0.0	0.015	6.0	LOSA	0.1	0.5	0.11	0.57	0.11	49.7
5	T1	All MCs	574	14.0	574	14.0	* 0.482	34.1	LOS C	13.3	104.5	0.85	0.72	0.85	38.5
6	R2	All MCs	159	8.8	159	8.8	0.273	37.1	LOS D	6.8	51.2	0.78	0.77	0.78	27.4
Appro	ach		755	12.5	755	12.5	0.482	34.0	LOS C	13.3	104.5	0.81	0.73	0.81	36.9
North:	Lake	side Dr (I	N)												
8	T1	All MCs	354	1.3	<mark>348</mark>	1.3	* 0.672	8.0	LOSA	1.8	13.1	0.06	0.25	0.06	51.3
9	R2	All MCs	714	5.0	<mark>701</mark>	5.0	0.672	6.0	LOSA	2.7	19.7	0.09	0.50	0.09	49.0
Appro	ach		1068	3.8	1050	3.8	0.672	4.3	LOSA	2.7	19.7	0.08	0.42	0.08	49.3
All Ve	hicles		2174	6.5	<mark>2156</mark>	6.6	0.672	17.9	LOS B	13.3	104.5	0.42	0.57	0.42	39.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

- 11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.
- * Critical Movement (Signal Timing)

Pedestrian Mo	vement	Perforr	nance							
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE	UE	Prop. Que	Eff. Stop	Travel Time	Travel Dist.	Aver. Speed
	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
West: Racecours	se Dr (W)									
P4 Full	58	54.3	LOS E ¹²	0.2	0.2	0.95	0.95	208.1	200.0	0.96
All Pedestrians	58	54.3	LOS E ¹²	0.2	0.2	0.95	0.95	208.1	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 101 [Racecourse_Lakeside_Development_2029_PM (WEST) (Site Folder: Development- Racecourse Rd / Lakeside

Dr)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■■ Network: N101 [Racecourse_Lakeside_Townsv ille Turf Club

Access_Development_2029_PM (Network Folder: Existing)]

2029 Development Traffic Volumes Site Category: Future Conditions 1

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase

Times)

Design Life Analysis (Final Year): Results for 5 years

Vehi	cle M	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows		rival ows HV]	Deg. Satn	Aver. Delay	Level of Service	95% Back [Veh.	Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	ı: Lake	eside Dr (S)												
2	T1	All MCs	166	2.8	166	2.8	0.079	18.6	LOS B	3.2	23.0	0.68	0.47	0.68	31.0
3	R2	All MCs	31	26.6	312	26.6	* 0.391	71.4	LOS E	1.9	16.5	1.00	0.74	1.00	4.2
Appro	oach		196	6.5	196	6.5	0.391	26.8	LOS C	3.2	23.0	0.73	0.51	0.73	23.8
North	: Lake	side Dr (N	٧)												
7	L2	All MCs	227	4.6	227	4.6	0.280	31.0	LOS C	8.2	60.0	0.67	0.76	0.67	21.4
8	T1	All MCs	1263	1.4	1263	1.4	* 0.848	38.5	LOS D	40.5	288.4	0.96	0.93	1.04	17.6
Appro	oach		1490	1.9	1490	1.9	0.848	37.4	LOS D	40.5	288.4	0.92	0.90	0.98	17.5
West	Race	course D	r (W)												
10	L2	All MCs	543	0.9	543	0.9	0.485	5.7	LOSA	5.6	40.1	0.24	0.56	0.24	50.9
11	T1	All MCs	417	9.2	417	9.2	* 0.485	23.7	LOS C	10.9	82.6	0.63	0.63	0.63	34.1
12	R2	All MCs	34	30.8	34 3	30.8	0.064	33.5	LOS C	1.3	11.6	0.69	0.70	0.69	29.0
Appro	oach		994	5.4	994	5.4	0.485	14.2	LOS B	10.9	82.6	0.42	0.59	0.42	42.9
All Ve	hicles		2680	3.5	2680	3.5	0.848	28.0	LOS C	40.5	288.4	0.72	0.76	0.76	27.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mo	vement	Perform	nance							
Mov .	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID Crossing	Flow	Delay	Service	QUE		Que	Stop	Time	Dist.	Speed
				[Ped	Dist]		Rate			
	ped/h	sec		ped	m			sec	m	m/sec
West: Racecours	e Dr (W)									
P4 Full	6	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96
All Pedestrians	6	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 101 [Racecourse_Lakeside_Townsville Turf Club Access_Development_2029_PM (Site Folder: Development-

Racecourse Rd / Lakeside Dr)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Racecourse_Lakeside_Townsv ille Turf Club
Access_Development_2029_PM

(Network Folder: Existing)]

2029 Development Traffic Volumes Site Category: Future Conditions 1

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase

Times)

Design Life Analysis (Final Year): Results for 5 years

Vehic	le M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	ows HV]	FI	rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Tow	nsville Tu	rf Club	Acce	ss (S)										
1 2	L2 T1	All MCs All MCs	409 58	1.4 0.0	409 58	1.4 0.0	0.857 * 0.163	48.0 57.4	LOS D LOS E ¹¹	26.3 1.6	186.3 11.3	1.00 0.96	1.04 0.69	1.18 0.96	27.8 9.1
Appro	ach		467	1.2	467	1.2	0.857	49.2	LOS D	26.3	186.3	0.99	1.00	1.15	25.0
East:	Race	course Dr	(E)												
4	L2	All MCs	30	0.0	30	0.0	0.022	6.4	LOSA	0.2	1.2	0.16	0.58	0.16	49.3
5	T1	All MCs	771	7.4	771	7.4	* 0.621	36.2	LOS D	18.9	141.0	0.90	0.78	0.90	37.7
6	R2	All MCs	114	5.1	114	5.1	0.191	36.0	LOS D	4.7	34.4	0.75	0.75	0.75	27.8
Appro	ach		914	6.9	914	6.9	0.621	35.2	LOS D	18.9	141.0	0.86	0.77	0.86	37.0
North:	Lake	side Dr (l	۷)												
8	T1	All MCs	350	1.3	350	1.3	* 0.825	3.9	LOSA	12.3	87.5	0.33	0.49	0.34	41.9
9	R2	All MCs	953	2.0	953	2.0	0.825	8.2	LOSA	12.3	87.5	0.28	0.60	0.29	46.7
Appro	ach		1303	1.8	1303	1.8	0.825	7.1	LOSA	12.3	87.5	0.29	0.57	0.31	46.1
All Ve	hicles		2684	3.4	2684	3.4	0.857	24.0	LOS C	26.3	186.3	0.61	0.71	0.64	36.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

- 11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.
- * Critical Movement (Signal Timing)

Pedestrian Mo	vement	Perforr	nance							
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	sec		ped	m m		Ttate	sec	m	m/sec
West: Racecours	e Dr (W)									
P4 Full	58	54.3	LOS E ¹²	0.2	0.2	0.95	0.95	208.1	200.0	0.96
All Pedestrians	58	54.3	LOS E ¹²	0.2	0.2	0.95	0.95	208.1	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 101 [Racecourse_Lakeside_Development_2029_Weekend (WEST) (Site Folder: Development- Racecourse Rd / Lakeside

Dr)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101

[Racecourse_Lakeside_Townsv
ille Turf Club
Access_Development_2029_We
ekend (Network Folder:
Existing)]

2029 Development Traffic Volumes Site Category: Future Conditions 1

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase

Times)

Design Life Analysis (Final Year): Results for 5 years

Vehi	cle M	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	ows HV]	FI	rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Lake	eside Dr (S)												
2	T1	All MCs	318	1.1	318	1.1	0.141	12.7	LOS B	4.7	33.0	0.51	0.43	0.51	36.6
3	R2	All MCs	47	7.5	47	7.5	* 0.528	71.6	LOS E	2.9	21.7	1.00	0.76	1.01	4.1
Appro	oach		364	1.9	364	1.9	0.528	20.3	LOS C	4.7	33.0	0.57	0.47	0.58	28.3
North	: Lake	side Dr (N	۷)												
7	L2	All MCs	223	5.2	223	5.2	0.258	34.4	LOS C	7.6	55.6	0.63	0.75	0.63	22.8
8	T1	All MCs	1348	0.4	1348	0.4	* 0.771	31.5	LOS C	34.5	242.8	0.89	0.80	0.89	21.7
Appro	oach		1571	1.1	1571	1.1	0.771	31.9	LOS C	34.5	242.8	0.85	0.80	0.85	19.5
West	: Race	course D	r (W)												
10	L2	All MCs	431	2.8	431	2.8	0.434	5.8	LOSA	5.1	36.7	0.27	0.57	0.27	50.5
11	T1	All MCs	488	4.5	488	4.5	* 0.434	28.5	LOS C	12.1	87.7	0.71	0.66	0.71	31.5
12	R2	All MCs	3	0.0	3	0.0	0.006	35.0	LOS C	0.1	0.9	0.70	0.63	0.70	28.2
Appro	oach		923	3.7	923	3.7	0.434	17.9	LOS B	12.1	87.7	0.50	0.62	0.50	39.9
All Ve	hicles		2858	2.0	2858	2.0	0.771	25.9	LOS C	34.5	242.8	0.70	0.70	0.70	28.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mo	vement	Perforr	nance							
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE		Prop. Que	Eff. Stop	Travel Time	Travel Dist.	Aver. Speed
				[Ped	Dist]		Rate			
	ped/h	sec		ped	m			sec	m	m/sec
West: Racecours	se Dr (W)									
P4 Full	6	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96
All Pedestrians	6	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Site: 101 [Racecourse_Lakeside_Townsville Turf Club Access_Development_2029_Weekend (Site Folder: Development- Racecourse Rd / Lakeside Dr)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101

[Racecourse_Lakeside_Townsville Turf Club

Access_Development_2029_Weekend (Network Folder:

Existing)]

2029 Development Traffic Volumes Site Category: Future Conditions 1

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase

Times)

Design Life Analysis (Final Year): Results for 5 years

Vehi	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Towi	nsville Tu				,,,	V/ O	- 555		7011					1(11)11
1	L2	All MCs	269	0.9	269	0.9	0.465	10.1	LOS B	5.5	38.7	0.43	0.70	0.43	45.8
2 Appro	T1 pach	All MCs	179 448	0.0	179 448	0.0	* 0.502 0.502	58.1 29.3	LOS C	5.2 5.5	36.4 38.7	1.00 0.66	0.77	1.00 0.66	28.7
East:	Race	course Dr	(E)												
4	L2	All MCs	44	0.0	44	0.0	0.034	6.0	LOSA	0.2	1.1	0.12	0.58	0.12	49.7
5	T1	All MCs	529	2.9	529	2.9	* 0.502	39.5	LOS D	13.0	93.6	0.89	0.76	0.89	36.5
6	R2	All MCs	155	5.3	155	5.3	0.314	42.8	LOS D	7.2	52.6	0.84	0.78	0.84	25.2
Appro	oach		728	3.2	728	3.2	0.502	38.1	LOS D	13.0	93.6	0.83	0.75	0.83	35.0
North	: Lake	side Dr (N	۷)												
8	T1	All MCs	433	0.0	433	0.0	* 0.740	0.7	LOSA	2.9	20.2	0.08	0.27	0.08	51.2
9	R2	All MCs	912	0.6	912	0.6	0.740	5.6	LOSA	2.9	20.2	80.0	0.50	0.08	49.7
Appro	oach		1345	0.4	1345	0.4	0.740	4.1	LOSA	2.9	20.2	0.08	0.43	0.08	49.9
All Ve	hicles		2522	1.2	2522	1.2	0.740	18.4	LOS B	13.0	93.6	0.40	0.57	0.40	38.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

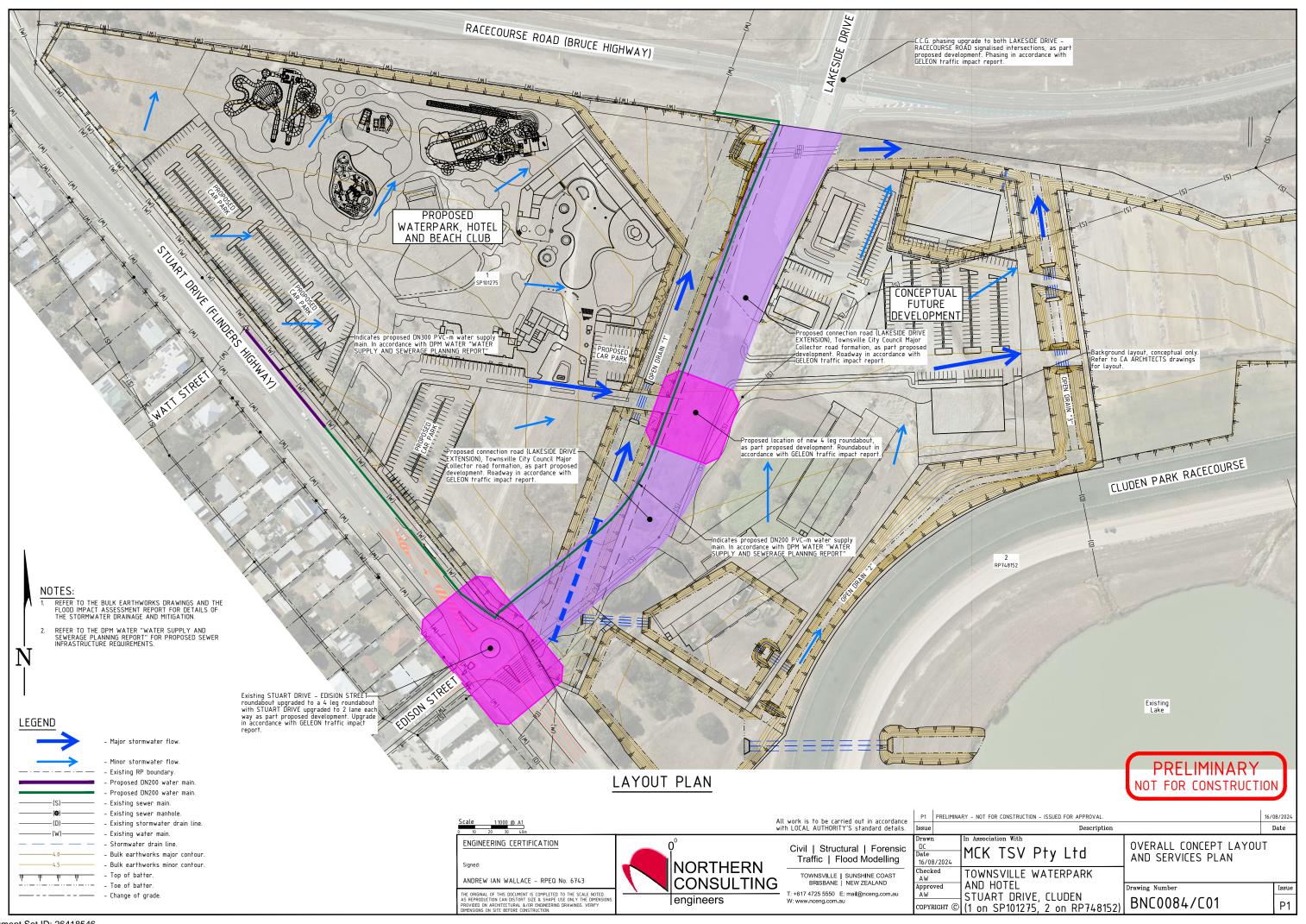
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

- 11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.
- * Critical Movement (Signal Timing)

Pedestrian Mov	vement	Perforr	nance							
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE		Prop. Que	Eff. Stop	Travel Time	Travel Dist.	Aver. Speed
				[Ped	Dist]		Rate			
	ped/h	sec		ped	m			sec	m	m/sec
West: Racecourse	e Dr (W)									
P4 Full	58	54.3	LOS E ¹²	0.2	0.2	0.95	0.95	208.1	200.0	0.96
All Pedestrians	58	54.3	LOS E ¹²	0.2	0.2	0.95	0.95	208.1	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)


Traffic Impact Assessment

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

Appendix F Civil engineering drawings

Document Set IDR264t 85660-RP02-A Version: 1, Version Date: 24/10/2024

Traffic Impact Assessment

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

Appendix G SIDRA outputs (design)

Document Set IDR264t 85660-RP02-A Version: 1, Version Date: 24/10/2024

▼ Site: 303 [Precinct 1 & 2_Precinct 3_Design_2029_AM (Site)

Folder: Final Design 1)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

2029 Design Traffic Volumes Site Category: Proposed Design 2

Roundabout

Design Life Analysis (Final Year): Results for 5 years

Mov Turn Mov Class Flows Flows Flows Flows Flows Flows Flows Satin Delay Service Servi	Vehi	cle M	ovemen	t Perfo	rma	nce											
Total HV Total HV Weh/h % veh/h h veh/h h veh/h kell veh/h veh/h h veh/h		Turn									95% Back	Of Queue					
South: Lakeside Dr Extended (S) South: Lakeside Dr Extended (S)	ID		Class					Satn	Delay	Service	[\/oh	Diet 1	Que			Speed	
South: Lakeside Dr Extended (S) 1								v/c	sec					Nate	Cycles	km/h	
2 T1 All MCs 135 6.9 135 6.9 0.247 6.6 LOS A 1.6 11.6 0.56 0.58 0.56 36.5 3 R2 All MCs 62 0.0 62 0.0 0.247 10.6 LOS B 1.6 11.6 0.56 0.58 0.56 43.3 Approach 247 3.8 247 3.8 0.247 7.5 LOS A 1.6 11.6 0.56 0.58 0.56 40.8 East: Precinct 1 & 2 Access (E) 4 L2 All MCs 79 0.0 79 0.0 0.251 6.0 LOS A 1.6 11.8 0.54 0.62 0.54 39.0 5 T1 All MCs 1 0.0 1 0.0 0.251 6.3 LOS A 1.6 11.8 0.54 0.62 0.54 45.0 6 R2 All MCs 179 3.5 179 3.5 0.251 10.6 LOS B 1.6 11.8 0.54 0.62 0.54 39.0 Approach 259 2.4 259 2.4 0.251 9.1 LOS A 1.6 11.8 0.54 0.62 0.54 39.0 North: Lakeside Dr Extended (N) 7 L2 All MCs 152 2.8 152 2.8 0.298 4.7 LOS A 2.2 15.7 0.34 0.51 0.34 45.0 8 T1 All MCs 129 9.0 129 9.0 0.298 5.2 LOS A 2.2 15.7 0.34 0.51 0.34 38.6 9 R2 All MCs 108 0.0 108 0.0 0.298 9.1 LOS A 2.2 15.7 0.34 0.51 0.34 43.6 West: Precinct 3 Access (W) 10 L2 All MCs 64 0.0 64 0.0 0.099 6.4 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.6	South	ı: Lake	side Dr E	Extende													
3 R2 All MCs 62 0.0 62 0.0 0.247 10.6 LOS B 1.6 11.6 0.56 0.58 0.56 43.3 Approach 247 3.8 247 3.8 0.247 7.5 LOS A 1.6 11.6 0.56 0.58 0.56 40.8 East: Precinct 1 & 2 Access (E) 4 L2 All MCs 79 0.0 79 0.0 0.251 6.0 LOS A 1.6 11.8 0.54 0.62 0.54 39.0 5 T1 All MCs 1 0.0 1 0.0 0.251 6.3 LOS A 1.6 11.8 0.54 0.62 0.54 45.0 6 R2 All MCs 179 3.5 0.251 10.6 LOS A 1.6 11.8 0.54 0.62 0.54 39.0 <td a="" col<="" collection="" of="" rows="" td="" the=""><td>1</td><td>L2</td><td>All MCs</td><td>51</td><td>0.0</td><td>51</td><td>0.0</td><td>0.247</td><td>6.1</td><td>LOSA</td><td>1.6</td><td>11.6</td><td>0.56</td><td>0.58</td><td>0.56</td><td>44.1</td></td>	<td>1</td> <td>L2</td> <td>All MCs</td> <td>51</td> <td>0.0</td> <td>51</td> <td>0.0</td> <td>0.247</td> <td>6.1</td> <td>LOSA</td> <td>1.6</td> <td>11.6</td> <td>0.56</td> <td>0.58</td> <td>0.56</td> <td>44.1</td>	1	L2	All MCs	51	0.0	51	0.0	0.247	6.1	LOSA	1.6	11.6	0.56	0.58	0.56	44.1
Approach 247 3.8 247 3.8 0.247 7.5 LOS A 1.6 11.6 0.56 0.58 0.56 40.8 East: Precinct 1 & 2 Access (E) 4 L2 All MCs 79 0.0 79 0.0 0.251 6.0 LOS A 1.6 11.8 0.54 0.62 0.54 39.0 5 T1 All MCs 1 0.0 1 0.0 0.251 6.3 LOS A 1.6 11.8 0.54 0.62 0.54 45.0 6 R2 All MCs 179 3.5 179 3.5 0.251 10.6 LOS B 1.6 11.8 0.54 0.62 0.54 39.0 Approach 259 2.4 259 2.4 0.251 9.1 LOS A 1.6 11.8 0.54 0.62 0.54 39.0 North: Lakeside Dr Extended (N) 7 L2 All MCs 152 2.8 152 2.8 0.298 4.7 LOS A 2.2 15.7 0.34 0.51 0.34 45.0 8 T1 All MCs 129 9.0 129 9.0 0.298 5.2 LOS A 2.2 15.7 0.34 0.51 0.34 38.6 9 R2 All MCs 108 0.0 108 0.0 0.298 9.1 LOS A 2.2 15.7 0.34 0.51 0.34 44.7 Approach 389 4.1 389 4.1 0.298 6.1 LOS A 2.2 15.7 0.34 0.51 0.34 43.6 West: Precinct 3 Access (W) 10 L2 All MCs 64 0.0 64 0.0 0.099 6.4 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 11 T1 All MCs 1 0.0 1 0.0 0.099 6.7 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.6	2	T1	All MCs	135	6.9	135	6.9	0.247	6.6	LOSA	1.6	11.6	0.56	0.58	0.56	36.5	
East: Precinct 1 & 2 Access (E) 4	3	R2	All MCs	62	0.0	62	0.0	0.247	10.6	LOS B	1.6	11.6	0.56	0.58	0.56	43.3	
4 L2 All MCs 79 0.0 79 0.0 0.251 6.0 LOS A 1.6 11.8 0.54 0.62 0.54 39.0 5 T1 All MCs 1 0.0 1 0.0 0.251 6.3 LOS A 1.6 11.8 0.54 0.62 0.54 45.0 6 R2 All MCs 179 3.5 179 3.5 0.251 10.6 LOS B 1.6 11.8 0.54 0.62 0.54 39.0 Approach 259 2.4 259 2.4 0.251 9.1 LOS A 1.6 11.8 0.54 0.62 0.54 39.0 North: Lakeside Dr Extended (N) 7 L2 All MCs 152 2.8 152 2.8 0.298 4.7 LOS A 2.2 15.7 0.34 0.51 0.34 45.0 8 T1 All MCs 129 9.0 129 9.0 0.298 5.2 LOS A 2.2 15.7 0.34 0.51 0.34 38.6 9 R2 All MCs 108 0.0 108 0.0 0.298 9.1 LOS A 2.2 15.7 0.34 0.51 0.34 44.7 Approach 389 4.1 389 4.1 0.298 6.1 LOS A 2.2 15.7 0.34 0.51 0.34 43.6 West: Precinct 3 Access (W) 10 L2 All MCs 64 0.0 64 0.0 0.099 6.4 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 11 T1 All MCs 1 0.0 1 0.0 0.099 6.7 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.7	Appro	oach		247	3.8	247	3.8	0.247	7.5	LOSA	1.6	11.6	0.56	0.58	0.56	40.8	
5 T1 All MCs 1 0.0 1 0.0 0.251 6.3 LOS A 1.6 11.8 0.54 0.62 0.54 45.0 6 R2 All MCs 179 3.5 179 3.5 0.251 10.6 LOS B 1.6 11.8 0.54 0.62 0.54 39.0 Approach 259 2.4 259 2.4 0.251 9.1 LOS A 1.6 11.8 0.54 0.62 0.54 39.0 North: Lakeside Dr Extended (N) 7 L2 All MCs 152 2.8 152 2.8 0.298 4.7 LOS A 2.2 15.7 0.34 0.51 0.34 45.0 8 T1 All MCs 129 9.0 129 9.0 0.298 5.2 LOS A 2.2 15.7 0.34 0.51 0.34 38.6 9 R2 All MCs 108 0.0 108 0.0 0.298 9.1 LOS A 2.2 15.7 0.34 0.51 0.34 44.7 Approach 389 4.1 389 4.1 0.298 6.1 LOS A 2.2 15.7 0.34 0.51 0.34 43.6 West: Precinct 3 Access (W) 10 L2 All MCs 64 0.0 64 0.0 0.099 6.4 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 11 T1 All MCs 1 0.0 1 0.0 0.099 6.7 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.7	East:	Precir	nct 1 & 2 /	Access	(E)												
6 R2 All MCs 179 3.5 179 3.5 0.251 10.6 LOS B 1.6 11.8 0.54 0.62 0.54 39.0 Approach 259 2.4 259 2.4 0.251 9.1 LOS A 1.6 11.8 0.54 0.62 0.54 39.0 North: Lakeside Dr Extended (N) 7 L2 All MCs 152 2.8 152 2.8 0.298 4.7 LOS A 2.2 15.7 0.34 0.51 0.34 45.0 8 T1 All MCs 129 9.0 129 9.0 0.298 5.2 LOS A 2.2 15.7 0.34 0.51 0.34 38.6 9 R2 All MCs 108 0.0 108 0.0 0.298 9.1 LOS A 2.2 15.7 0.34 0.51 0.34 44.7 Approach 389 4.1 389 4.1 0.298 6.1 LOS A 2.2 15.7 0.34 0.51 0.34 43.6 West: Precinct 3 Access (W) 10 L2 All MCs 64 0.0 64 0.0 0.099 6.4 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 11 T1 All MCs 1 0.0 1 0.0 0.099 6.7 LOS A 0.6 4.1 0.56 0.62 0.56 46.3 12 R2 All MCs 29 0.0 29 0.0 0.099 10.9 LOS B 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.7	4	L2	All MCs	79	0.0	79	0.0	0.251	6.0	LOS A	1.6	11.8	0.54	0.62	0.54	39.0	
Approach 259 2.4 259 2.4 0.251 9.1 LOS A 1.6 11.8 0.54 0.62 0.54 39.0 North: Lakeside Dr Extended (N) 7	5	T1	All MCs	1	0.0	1	0.0	0.251	6.3	LOS A	1.6	11.8	0.54	0.62	0.54	45.0	
North: Lakeside Dr Extended (N) 7	6	R2	All MCs	179	3.5	179	3.5	0.251	10.6	LOS B	1.6	11.8	0.54	0.62	0.54	39.0	
7 L2 All MCs 152 2.8 152 2.8 0.298 4.7 LOS A 2.2 15.7 0.34 0.51 0.34 45.0 8 T1 All MCs 129 9.0 129 9.0 0.298 5.2 LOS A 2.2 15.7 0.34 0.51 0.34 38.6 9 R2 All MCs 108 0.0 108 0.0 0.298 9.1 LOS A 2.2 15.7 0.34 0.51 0.34 44.7 Approach 389 4.1 389 4.1 0.298 6.1 LOS A 2.2 15.7 0.34 0.51 0.34 43.6 West: Precinct 3 Access (W) 10 L2 All MCs 64 0.0 64 0.0 0.099 6.4 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 11 T1 All MCs 1 0.0 1 0.0 0.099 6.7 LOS A 0.6 4.1 0.56 0.62 0.56 46.3 12 R2 All MCs 29 0.0 29 0.0 0.099 10.9 LOS B 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.7	Appro	oach		259	2.4	259	2.4	0.251	9.1	LOSA	1.6	11.8	0.54	0.62	0.54	39.0	
8 T1 All MCs 129 9.0 129 9.0 0.298 5.2 LOS A 2.2 15.7 0.34 0.51 0.34 38.6 9 R2 All MCs 108 0.0 108 0.0 0.298 9.1 LOS A 2.2 15.7 0.34 0.51 0.34 44.7 Approach 389 4.1 389 4.1 0.298 6.1 LOS A 2.2 15.7 0.34 0.51 0.34 43.6 West: Precinct 3 Access (W) 10 L2 All MCs 64 0.0 64 0.0 0.099 6.4 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 11 T1 All MCs 1 0.0 1 0.0 0.099 6.7 LOS A 0.6 4.1 0.56 0.62 0.56 46.3 12 R2 All MCs 29 0.0 29 0.0 0.099 10.9 LOS B 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.7	North	: Lake	side Dr E	xtende	d (N)												
9 R2 All MCs 108 0.0 108 0.0 0.298 9.1 LOS A 2.2 15.7 0.34 0.51 0.34 44.7 Approach 389 4.1 389 4.1 0.298 6.1 LOS A 2.2 15.7 0.34 0.51 0.34 43.6 West: Precinct 3 Access (W) 10 L2 All MCs 64 0.0 64 0.0 0.099 6.4 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 11 T1 All MCs 1 0.0 1 0.0 0.099 6.7 LOS A 0.6 4.1 0.56 0.62 0.56 46.3 12 R2 All MCs 29 0.0 29 0.0 0.099 10.9 LOS B 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.7	7	L2	All MCs	152	2.8	152	2.8	0.298	4.7	LOSA	2.2	15.7	0.34	0.51	0.34	45.0	
Approach 389 4.1 389 4.1 0.298 6.1 LOS A 2.2 15.7 0.34 0.51 0.34 43.6 West: Precinct 3 Access (W) 10 L2 All MCs 64 0.0 64 0.0 0.099 6.4 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 11 T1 All MCs 1 0.0 1 0.0 0.099 6.7 LOS A 0.6 4.1 0.56 0.62 0.56 46.3 12 R2 All MCs 29 0.0 29 0.0 0.099 10.9 LOS B 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.7	8	T1	All MCs	129	9.0	129	9.0	0.298	5.2	LOS A	2.2	15.7	0.34	0.51	0.34	38.6	
West: Precinct 3 Access (W) 10 L2 All MCs 64 0.0 64 0.0 0.099 6.4 LOS A	9	R2	All MCs	108	0.0	108	0.0	0.298	9.1	LOS A	2.2	15.7	0.34	0.51	0.34	44.7	
10 L2 All MCs 64 0.0 64 0.0 0.099 6.4 LOS A 0.6 4.1 0.56 0.62 0.56 40.6 11 T1 All MCs 1 0.0 1 0.0 0.099 6.7 LOS A 0.6 4.1 0.56 0.62 0.56 46.3 12 R2 All MCs 29 0.0 29 0.0 0.099 10.9 LOS B 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.7	Appro	oach		389	4.1	389	4.1	0.298	6.1	LOSA	2.2	15.7	0.34	0.51	0.34	43.6	
11 T1 All MCs 1 0.0 1 0.0 0.099 6.7 LOS A 0.6 4.1 0.56 0.62 0.56 46.3 12 R2 All MCs 29 0.0 29 0.0 0.099 10.9 LOS B 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.7	West	: Preci	nct 3 Acc	ess (W)												
12 R2 All MCs 29 0.0 29 0.0 0.099 10.9 LOS B 0.6 4.1 0.56 0.62 0.56 40.6 Approach 95 0.0 95 0.0 0.099 7.8 LOS A 0.6 4.1 0.56 0.62 0.56 40.7	10	L2	All MCs	64	0.0	64	0.0	0.099	6.4	LOS A	0.6	4.1	0.56	0.62	0.56	40.6	
Approach 95 0.0 95 0.0 0.099 7.8 LOSA 0.6 4.1 0.56 0.62 0.56 40.7	11	T1	All MCs	1	0.0	1	0.0	0.099	6.7	LOSA	0.6	4.1	0.56	0.62	0.56	46.3	
	12	R2	All MCs	29	0.0	29	0.0	0.099	10.9	LOS B	0.6	4.1	0.56	0.62	0.56	40.6	
All Vehicles 990 3.2 990 3.2 0.298 7.4 LOS A 2.2 15.7 0.47 0.57 0.47 41.5	Appro	oach		95	0.0	95	0.0	0.099	7.8	LOSA	0.6	4.1	0.56	0.62	0.56	40.7	
	All Ve	hicles		990	3.2	990	3.2	0.298	7.4	LOSA	2.2	15.7	0.47	0.57	0.47	41.5	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GELEON | Licence: NETWORK / 1PC | Processed: Friday, 9 August 2024 10:19:42 AM

Project: P:\50890 BNC (1-105 Racecourse Rd, Cluden)\02. D&D\05. SIDRA\Masterplan\Design 1_Bruce Hwy_Lakeside Dr_Townsville Turf Club Access_Stuart Dr.sip9

Design 1)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■■ Network: N101 [Racecourse_Lakeside_Townsv ille Turf Club Access_Design_2029_AM (Network Folder: Design)]

2029 Design Traffic Volumes Site Category: Proposed Design 1

Roundabout

Design Life Analysis (Final Year): Results for 5 years

Vehic	cle M	ovement	t Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of	95% Back	Of Queue		Eff.	Aver.	Aver.
ID		Class		lows	F۱ Total I]	OWS	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m m		rtate	Oyolos	km/h
South	: Stua	rt Dr (S)													
1	L2	All MCs	45	14.6	45	14.6	0.370	6.4	LOSA	2.5	19.0	0.45	0.51	0.45	54.8
2	T1	All MCs	736	8.5	736	8.5	0.370	7.5	LOSA	2.5	19.0	0.46	0.53	0.46	56.6
3	R2	All MCs	144	4.9	144	4.9	0.370	11.3	LOS B	2.5	18.3	0.47	0.57	0.47	52.5
3u	U	All MCs	1	0.0	1	0.0	0.370	13.5	LOS B	2.5	18.3	0.47	0.57	0.47	56.9
Appro	ach		926	8.2	926	8.2	0.370	8.1	LOSA	2.5	19.0	0.46	0.54	0.46	56.1
East:	Lakes	ide Dr Ex	tended	(E)											
4	L2	All MCs	133	6.1	133	6.1	0.313	7.8	LOSA	1.4	10.0	0.62	0.75	0.62	50.2
5	T1	All MCs	28	8.2	28	8.2	0.313	7.3	LOSA	1.4	10.0	0.62	0.75	0.62	48.6
6	R2	All MCs	75	1.6	75	1.6	0.313	11.6	LOS B	1.4	10.0	0.62	0.75	0.62	50.7
Appro	ach		236	4.9	236	4.9	0.313	9.0	LOSA	1.4	10.0	0.62	0.75	0.62	50.1
North	Stua	rt Dr (N)													
7	L2	All MCs	55	2.1	55	2.1	0.315	6.1	LOS A	2.0	15.2	0.45	0.52	0.45	54.4
8	T1	All MCs	614	10.3	614	10.3	0.315	7.2	LOSA	2.0	15.2	0.46	0.54	0.46	56.2
9	R2	All MCs	81	2.7	81	2.7	0.315	11.3	LOS B	2.0	14.7	0.47	0.57	0.47	54.0
9u	U	All MCs	12	0.0	12	0.0	0.315	13.6	LOS B	2.0	14.7	0.47	0.57	0.47	57.0
Appro	ach		762	8.8	762	8.8	0.315	7.7	LOSA	2.0	15.2	0.46	0.54	0.46	55.9
West:	Edisc	on St (W)													
10	L2	All MCs	180	1.2	180	1.2	0.415	10.4	LOS B	2.0	14.5	0.71	0.84	0.81	53.2
11	T1	All MCs	50	4.7	50	4.7	0.415	9.3	LOSA	2.0	14.5	0.71	0.84	0.81	46.2
12	R2	All MCs	25	0.0	25	0.0	0.415	13.6	LOS B	2.0	14.5	0.71	0.84	0.81	52.9
12u	U	All MCs	1	0.0	1	0.0	0.415	15.7	LOS B	2.0	14.5	0.71	0.84	0.81	50.4
Appro	ach		257	1.8	257	1.8	0.415	10.5	LOS B	2.0	14.5	0.71	0.84	0.81	52.3
All Ve	hicles		2181	7.3	2181	7.3	0.415	8.3	LOSA	2.5	19.0	0.51	0.60	0.52	55.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

CCG MOVEMENT SUMMARY

□□ Common Control Group: CCG1 [Racecourse Dr]
Output produced by SIDRA INTERSECTION Version: 9.1.6.228

EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (CCG User-Given Phase Times) Design Life Analysis (Final Year): Results for 5 years

No. No.	Vehi	cle M	ovement	Perfo	rma	nce (C	CG)									
Site : 101 [Race-course_Lakeside_Design_2029_AM (WEST)]		Turn									95% Back	Of Queue				
Site: 101 Racecourse_Lakeside Design_2029 AM (WEST)	טו		Class					Sain	Delay	Service	[Veh.	Dist]	Que			Speed
South: Lakeside Dr (S) 2								v/c	sec							km/h
2 T1 All MCs 274 3.0 274 3.0 *0.716 34.2 LOS C 7.4 53.2 0.82 0.67 0.84 22.1 3 R2 All MCs 85 17.8 85 17.8 0.516 52.4 LOS D 4.5 36.0 0.90 0.76 0.90 5.5 Approach 359 6.5 359 6.5 0.716 38.5 LOS D 7.4 53.2 0.84 0.69 0.66 17.9 North: Lakeside Dr (N) 7 L2 All MCs 94 11.1 94 11.1 0.140 36.3 LOS D 3.5 26.9 0.68 0.73 0.68 20.1 8 T1 All MCs 927 3.4 927 3.4 *0.634 34.4 LOS C 22.2 161.1 0.87 0.77 0.87 19.7 Approach 1021 4.1 1021 4.1 0.634 34.5 LOS C 22.2 161.1 0.85 0.76 0.85 18.5 West: Racecourse Dr (W) 10 L2 All MCs 735 2.1 735 2.1 0.677 6.0 LOS A 15.0 109.1 0.45 0.66 0.45 49.4 11 T1 All MCs 478 14.6 *0.677 22.5 LOS C 15.0 109.1 0.64 0.63 0.64 36.0 12 R2 All MCs 32 36.6 0.600 32.9 LOS C 1.2 11.1 0.68 0.70 0.68 29.3 Approach 1244 7.8 1244 7.8 0.677 13.1 LOS B 15.0 109.1 0.53 0.65 0.53 43.9 All Vehicles 2624 6.1 2624 6.1 0.716 24.9 LOS C 22.2 161.1 0.70 0.70 0.70 0.70 30.9 Site: 101 [Racecourse Lakeside Extended Design 2029_AM] South: Lakeside Dr Extended (S) 1 L2 All MCs 72 11.3 72 11.3 0.55 5.6 0.552 57.6 LOS E 16.0 44.2 1.00 0.78 1.00 1.02 Approach 378 4.3 378 4.3 0.552 57.6 LOS E 16.3 88.6 0.80 0.68 0.83 9.9 East: Racecourse Dr (E) 4 L2 All MCs 72 11.3 72 11.3 0.055 6.3 LOS A 0.3 2.66 0.14 0.58 0.69 0.75 28.4 Approach 748 12.6 748 12.6 0.404 29.4 LOS C 11.3 88.6 0.72 0.69 0.72 38.4 North: Lakeside Dr (S) 11 All MCs 171 1.9 517 13.9 0.404 0.9.9 LOS C 11.3 88.6 0.72 0.69 0.72 0.70 24.5 East: Racecourse Extended C 574 11.3 0.055 6.3 LOS A 0.3 2.66 0.14 0.58 0.68 0.80 39.9 6 R2 All MCs 159 8.8 159 8.8 0.254 34.7 LOS C 6.5 49.2 0.75 0.76 0.75 28.4 Approach 748 12.6 748 12.6 0.404 29.4 LOS C 11.3 88.6 0.72 0.69 0.72 38.4 North: Lakeside Dr (N) 8 T1 All MCs 319 2.5 319 2.5 0.558 8.9 LOS A 0.6 3.462 0.19 0.47 0.19 4.456 Approach 643 5.1 643 5.1 0.558 8.9 LOS A 0.6 3.462 0.19 0.47 0.19 4.456	Site:	101 [R	acecours	e_Lake	side_	_Desigr	1_20	29_AM (V	(EST)]							
Section Sect	South	n: Lake	eside Dr (S)												
Approach	2	T1	All MCs	274	3.0	274	3.0	* 0.716	34.2	LOS C	7.4	53.2	0.82	0.67	0.84	22.1
North: Lakeside Dr (N) 7	3	R2	All MCs	85 ′	17.8	85 1	7.8	0.516	52.4	LOS D	4.5	36.0	0.90	0.76	0.90	5.5
7 L2 All MCs 94 11.1 94 11.1 0.140 36.3 LOS D 3.5 26.9 0.68 0.73 0.68 20.1 8 T1 All MCs 927 3.4 927 3.4 *0.634 34.4 LOS C 22.2 161.1 0.87 0.77 0.87 19.7 Approach 1021 4.1 1021 4.1 0.634 34.5 LOS C 22.2 161.1 0.85 0.76 0.85 18.5 West: Racecourse Dr (W) 10 L2 All MCs 735 2.1 735 2.1 0.677 6.0 LOS A 15.0 109.1 0.45 0.66 0.45 49.4 11 T1 All MCs 478 14.6 478 14.6 *0.677 22.5 LOS C 15.0 109.1 0.64 0.63 0.64 36.0 12 R2 All MCs 32 36.6 32 36.6 0.060 32.9 LOS C 1.2 11.1 0.68 0.70 0.68 29.3 Approach 12.44 7.8 12.44 7.8 0.677 13.1 LOS B 15.0 109.1 0.53 0.65 0.53 43.9 All Vehicles 2624 6.1 2624 6.1 0.716 24.9 LOS C 22.2 161.1 0.70 0.70 0.70 0.70 30.9 Site: 101 [Racecourse Lakeside Lakeside Extended Design 2029 AM] South: Lakeside Dr Extended (S) 1 L2 All MCs 170 2.7 170 2.7 0.252 9.2 LOS A 2.6 18.5 0.33 0.65 0.33 47.1 2 T1 All MCs 208 5.6 208 5.6 0.552 57.6 LOS E 6.0 44.2 1.00 0.78 1.00 10.2 Approach 378 4.3 378 4.3 0.552 35.8 LOS D 6.0 44.2 1.00 0.78 1.00 10.2 Approach 378 4.3 378 4.3 0.552 35.8 LOS D 6.0 44.2 0.70 0.72 0.70 24.5 East: Racecourse Dr (E) 4 L2 All MCs 72 11.3 72 11.3 0.055 6.3 LOS A 0.3 2.6 0.14 0.58 0.14 50.0 55 T1 All MCs 517 13.9 517 13.9 0.404 30.9 LOS C 11.3 88.6 0.80 0.68 0.80 39.9 6 R2 All MCs 159 8.8 159 8.8 0.254 34.7 LOS C 6.5 49.2 0.75 0.76 0.75 28.4 Approach 748 12.6 748 12.6 0.404 29.4 LOS C 11.3 88.6 0.72 0.69 0.72 38.4 North: Lakeside Dr (N) 8 T1 All MCs 319 2.5 319 2.5 0.558 3.0 LOS A 3.6 26.2 0.16 0.25 0.16 34.3 4.9 R2 All MCs 643 5.1 643 5.1 0.558 8.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 8.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 962 6.5 0.558 6.9 LOS A 6.3 46.2 0.21 0.59 0.47 0.19 44.6	Appro	oach		359	6.5	359	6.5	0.716	38.5	LOS D	7.4	53.2	0.84	0.69	0.86	17.9
8	North	: Lake	side Dr (N	1)												
Approach 1021 4.1 1021 4.1 0.634 34.5 LOS C 22.2 161.1 0.85 0.76 0.85 18.5 West: Race-course Dr (W) 10	7	L2	All MCs	94	11.1	94 1	11.1	0.140	36.3	LOS D	3.5	26.9	0.68	0.73	0.68	20.1
West: Racecourse Dr (W) 10	8	T1	All MCs	927	3.4	927	3.4	* 0.634	34.4	LOS C	22.2	161.1	0.87	0.77	0.87	19.7
10 L2 All MCs 735 2.1 735 2.1 0.677 6.0 LOS A 15.0 109.1 0.45 0.66 0.45 49.4 11 T1 All MCs 478 14.6 478 14.6 *0.677 22.5 LOS C 15.0 109.1 0.64 0.63 0.64 36.0 12 R2 All MCs 32 36.6 32 36.6 0.060 32.9 LOS C 1.2 11.1 0.68 0.70 0.68 29.3 Approach 1244 7.8 1244 7.8 0.677 13.1 LOS B 15.0 109.1 0.53 0.65 0.53 43.9 All Vehicles 2624 6.1 2624 6.1 0.716 24.9 LOS C 22.2 161.1 0.70 0.70 0.70 30.9 Site: 101 [Racecourse_Lakeside_Lakeside Extended_Design_2029_AM] South: Lakeside Dr Extended (S) 1 L2 All MCs 170 2.7 170 2.7 0.252 9.2 LOS A 2.6 18.5 0.33 0.65 0.33 47.1 2 T1 All MCs 208 5.6 208 5.6 0.552 57.6 LOS E 1 6.0 44.2 1.00 0.78 1.00 10.2 Approach 378 4.3 378 4.3 0.552 35.8 LOS D 6.0 44.2 0.70 0.72 0.70 24.5 East: Racecourse Dr (E) 4 L2 All MCs 72 11.3 72 11.3 0.055 6.3 LOS A 0.3 2.6 0.14 0.58 0.14 50.0 5 T1 All MCs 517 13.9 517 13.9 0.404 30.9 LOS C 11.3 88.6 0.80 0.68 0.80 39.9 6 R2 All MCs 159 8.8 159 8.8 0.254 34.7 LOS C 6.5 49.2 0.75 0.76 0.75 28.4 Approach 748 12.6 748 12.6 0.404 29.4 LOS C 11.3 88.6 0.72 0.69 0.72 38.4 North: Lakeside Dr (N) 8 T1 All MCs 319 2.5 319 2.5 0.558 3.0 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6	Appro	oach		1021	4.1	1021	4.1	0.634	34.5	LOS C	22.2	161.1	0.85	0.76	0.85	18.5
11 T1 All MCs 478 14.6 478 14.6 * 0.677 22.5 LOS C 15.0 109.1 0.64 0.63 0.64 36.0 12 R2 All MCs 32 36.6 32 36.6 0.060 32.9 LOS C 1.2 11.1 0.68 0.70 0.68 29.3 Approach 1244 7.8 1244 7.8 0.677 13.1 LOS B 15.0 109.1 0.53 0.65 0.53 43.9 All Vehicles 2624 6.1 2624 6.1 0.716 24.9 LOS C 22.2 161.1 0.70 0.70 0.70 30.9 Site: 101 [Racecourse_Lakeside_Lakeside_Extended_Design_2029_AM] South: Lakeside Dr Extended (S) 1 L2 All MCs 170 2.7 170 2.7 0.252 9.2 LOS A 2.6 18.5 0.33 0.65 0.33 47.1 2 T1 All MCs 208 5.6 208 5.6 0.552 57.6 LOS E ¹¹ 6.0 44.2 1.00 0.78 1.00 10.2 Approach 378 4.3 378 4.3 0.552 35.8 LOS D 6.0 44.2 0.70 0.72 0.70 24.5 East: Racecourse Dr (E) 4 L2 All MCs 72 11.3 72 11.3 0.055 6.3 LOS A 0.3 2.6 0.14 0.58 0.14 50.0 5 T1 All MCs 517 13.9 517 13.9 0.404 30.9 LOS C 11.3 88.6 0.80 0.68 0.80 39.9 6 R2 All MCs 159 8.8 159 8.8 0.254 34.7 LOS C 6.5 49.2 0.75 0.76 0.75 28.4 Approach 748 12.6 748 12.6 0.404 29.4 LOS C 11.3 88.6 0.72 0.69 0.72 38.4 North: Lakeside Dr (N) 8 T1 All MCs 319 2.5 319 2.5 0.558 8.9 LOS A 6.3 46.2 0.19 0.47 0.19 44.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.19 0.47 0.19 44.6	West	: Race	course Di	(W)												
12 R2 All MCs 32 36.6 32 36.6 0.060 32.9 LOS C 1.2 11.1 0.68 0.70 0.68 29.3 Approach 1244 7.8 1244 7.8 0.677 13.1 LOS B 15.0 109.1 0.53 0.65 0.53 43.9 All Vehicles 2624 6.1 2624 6.1 0.716 24.9 LOS C 22.2 161.1 0.70 0.70 0.70 0.70 30.9 Site: 101 [Racecourse_Lakeside_Lakeside_Extended_Design_2∪29_AM] South: Lakeside Dr Extended (S) 1 L2 All MCs 170 2.7 170 2.7 0.252 9.2 LOS A 2.6 18.5 0.33 0.65 0.33 47.1 2 T1 All MCs 208 5.6 208 5.6 0.552 57.6 LOS E ¹¹ 6.0 44.2 1.00 0.78 1.00 10.2 Approach 378 4.3 378 4.3 0.552 35.8 LOS D 6.0 44.2 0.70 0.72 0.70 24.5 East: Racecourse Dr (E) 4 L2 All MCs 72 11.3 72 11.3 0.055 6.3 LOS A 0.3 2.6 0.14 0.58 0.14 50.0 5 T1 All MCs 517 13.9 517 13.9 0.404 30.9 LOS C 11.3 88.6 0.80 0.68 0.80 39.9 6 R2 All MCs 159 8.8 159 8.8 0.254 34.7 LOS C 6.5 49.2 0.75 0.76 0.75 28.4 Approach 748 12.6 748 12.6 0.404 29.4 LOS C 11.3 88.6 0.72 0.69 0.72 38.4 North: Lakeside Dr (N) 8 T1 All MCs 319 2.5 319 2.5 0.558 3.0 LOS A 3.6 26.2 0.16 0.25 0.16 34.3 9 R2 All MCs 643 5.1 643 5.1 0.558 8.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.19 0.47 0.19 44.6	10	L2	All MCs	735	2.1	735	2.1	0.677	6.0	LOSA	15.0	109.1	0.45	0.66	0.45	49.4
Approach 1244 7.8 1244 7.8 0.677 13.1 LOS B 15.0 109.1 0.53 0.65 0.53 43.9 All Vehicles 2624 6.1 2624 6.1 0.716 24.9 LOS C 22.2 161.1 0.70 0.70 0.70 30.9 Site: 101 [Racecourse_Lakeside_Lakeside_Extended_Design_2U29_AM] South: Lakeside Dr Extended (S) 1	11	T1	All MCs	478 ′	14.6	478 1	4.6	* 0.677	22.5	LOS C	15.0	109.1	0.64	0.63	0.64	36.0
All Vehicles	12	R2	All MCs	323	36.6	32 3	6.6	0.060	32.9	LOS C	1.2	11.1	0.68	0.70	0.68	29.3
Site: 101 [Racecourse_Lakeside_Lakeside_Extended_Design_2029_AM] South: Lakeside Dr Extended (S) 1	Appro	oach		1244	7.8	1244	7.8	0.677	13.1	LOS B	15.0	109.1	0.53	0.65	0.53	43.9
South: Lakeside Dr Extended (S) 1	All Ve	hicles		2624	6.1	2624	6.1	0.716	24.9	LOS C	22.2	161.1	0.70	0.70	0.70	30.9
1 L2 All MCs 170 2.7 170 2.7 0.252 9.2 LOS A 2.6 18.5 0.33 0.65 0.33 47.1 2 T1 All MCs 208 5.6 208 5.6 0.552 57.6 LOS E ¹¹ 6.0 44.2 1.00 0.78 1.00 10.2 Approach 378 4.3 378 4.3 0.552 35.8 LOS D 6.0 44.2 0.70 0.72 0.70 24.5 East: Racecourse Dr (E) 4 L2 All MCs 72 11.3 72 11.3 0.055 6.3 LOS A 0.3 2.6 0.14 0.58 0.14 50.0 5 T1 All MCs 517 13.9 517 13.9 0.404 30.9 LOS C 11.3 88.6 0.80 0.68 0.80 39.9 6 R2 All MCs 159 8.8 159 8.8 0.254 34.7 LOS C 6.5 49.2 0.75 0.76 0.75 28.4 Approach 748 12.6 748 12.6 0.404 29.4 LOS C 11.3 88.6 0.72 0.69 0.72 38.4 North: Lakeside Dr (N) 8 T1 All MCs 319 2.5 319 2.5 0.558 3.0 LOS A 3.6 26.2 0.16 0.25 0.16 34.3 9 R2 All MCs 643 5.1 643 5.1 0.558 8.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.19 0.47 0.19 44.6	Site:	101 [R	acecours	e_Lake	side_	_Lakesi	de E	xtended_l	Design_2	029_AM]						
2 T1 All MCs 208 5.6 208 5.6 0.552 57.6 LOS E ¹¹ 6.0 44.2 1.00 0.78 1.00 10.2 Approach 378 4.3 378 4.3 0.552 35.8 LOS D 6.0 44.2 0.70 0.72 0.70 24.5 East: Racecourse Dr (E) 4 L2 All MCs 72 11.3 72 11.3 0.055 6.3 LOS A 0.3 2.6 0.14 0.58 0.14 50.0 5 T1 All MCs 517 13.9 517 13.9 0.404 30.9 LOS C 11.3 88.6 0.80 0.68 0.80 39.9 6 R2 All MCs 159 8.8 159 8.8 0.254 34.7 LOS C 6.5 49.2 0.75 0.76 0.75 28.4 Approach 748 12.6 748 12.6 0.404 29.4 LOS C 11.3 88.6 0.72 0.69 0.72 38.4 North: Lakeside Dr (N) 8 T1 All MCs 319 2.5 319 2.5 0.558 3.0 LOS A 3.6 26.2 0.16 0.25 0.16 34.3 9 R2 All MCs 643 5.1 643 5.1 0.558 8.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.19 0.47 0.19 44.6	South	n: Lake	eside Dr E	xtende	d (S)											
Approach 378 4.3 378 4.3 0.552 35.8 LOS D 6.0 44.2 0.70 0.72 0.70 24.5 East: Racecourse Dr (E) 4	1	L2	All MCs	170	2.7	170	2.7	0.252	9.2	LOSA	2.6	18.5	0.33	0.65	0.33	47.1
East: Racecourse Dr (E) 4	2	T1	All MCs	208	5.6	208	5.6	0.552	57.6	LOS E ¹¹	6.0	44.2	1.00	0.78	1.00	10.2
4 L2 All MCs 72 11.3 72 11.3 0.055 6.3 LOS A 0.3 2.6 0.14 0.58 0.14 50.0 5 T1 All MCs 517 13.9 517 13.9 0.404 30.9 LOS C 11.3 88.6 0.80 0.68 0.80 39.9 6 R2 All MCs 159 8.8 159 8.8 0.254 34.7 LOS C 6.5 49.2 0.75 0.76 0.75 28.4 Approach 748 12.6 748 12.6 0.404 29.4 LOS C 11.3 88.6 0.72 0.69 0.72 38.4 North: Lakeside Dr (N) 8 T1 All MCs 319 2.5 319 2.5 0.558 3.0 LOS A 3.6 26.2 0.16 0.25 0.16 34.3 9 R2 All MCs 643 5.1 643 5.1 0.558 8.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.19 0.47 0.19 44.6	Appro	oach		378	4.3	378	4.3	0.552	35.8	LOS D	6.0	44.2	0.70	0.72	0.70	24.5
5 T1 All MCs 517 13.9 517 13.9 0.404 30.9 LOS C 11.3 88.6 0.80 0.68 0.80 39.9 6 R2 All MCs 159 8.8 159 8.8 0.254 34.7 LOS C 6.5 49.2 0.75 0.76 0.75 28.4 Approach 748 12.6 748 12.6 0.404 29.4 LOS C 11.3 88.6 0.72 0.69 0.72 38.4 North: Lakeside Dr (N) 8 T1 All MCs 319 2.5 319 2.5 0.558 3.0 LOS A 3.6 26.2 0.16 0.25 0.16 34.3 9 R2 All MCs 643 5.1 643 5.1 0.558 8.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.19 0.47 0.19 44.6	East:	Race	course Dr	(E)												
6 R2 All MCs 159 8.8 159 8.8 0.254 34.7 LOS C 6.5 49.2 0.75 0.76 0.75 28.4 Approach 748 12.6 748 12.6 0.404 29.4 LOS C 11.3 88.6 0.72 0.69 0.72 38.4 North: Lakeside Dr (N) 8 T1 All MCs 319 2.5 319 2.5 0.558 3.0 LOS A 3.6 26.2 0.16 0.25 0.16 34.3 9 R2 All MCs 643 5.1 643 5.1 0.558 8.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.19 0.47 0.19 44.6	4	L2	All MCs	72	11.3	72 1	11.3	0.055	6.3	LOSA	0.3	2.6	0.14	0.58	0.14	50.0
Approach 748 12.6 748 12.6 0.404 29.4 LOS C 11.3 88.6 0.72 0.69 0.72 38.4 North: Lakeside Dr (N) 8 T1 All MCs 319 2.5 319 2.5 0.558 3.0 LOS A 3.6 26.2 0.16 0.25 0.16 34.3 9 R2 All MCs 643 5.1 643 5.1 0.558 8.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.19 0.47 0.19 44.6	5	T1	All MCs	517 ′	13.9	517 1	3.9	0.404	30.9	LOS C	11.3	88.6	0.80	0.68	0.80	39.9
North: Lakeside Dr (N) 8 T1 All MCs 319 2.5 319 2.5 0.558 3.0 LOS A 3.6 26.2 0.16 0.25 0.16 34.3 9 R2 All MCs 643 5.1 643 5.1 0.558 8.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.19 0.47 0.19 44.6	6	R2	All MCs	159	8.8	159	8.8	0.254	34.7	LOS C	6.5	49.2	0.75	0.76	0.75	28.4
8 T1 All MCs 319 2.5 319 2.5 0.558 3.0 LOS A 3.6 26.2 0.16 0.25 0.16 34.3 9 R2 All MCs 643 5.1 643 5.1 0.558 8.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.19 0.47 0.19 44.6	Appro	oach		748 ′	12.6	748 1	2.6	0.404	29.4	LOS C	11.3	88.6	0.72	0.69	0.72	38.4
9 R2 All MCs 643 5.1 643 5.1 0.558 8.9 LOS A 6.3 46.2 0.21 0.58 0.21 45.6 Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.19 0.47 0.19 44.6	North	: Lake	side Dr (N	1)												
Approach 962 4.2 962 4.2 0.558 6.9 LOS A 6.3 46.2 0.19 0.47 0.19 44.6	8	T1	All MCs	319	2.5	319	2.5	0.558	3.0	LOSA	3.6	26.2	0.16	0.25	0.16	34.3
••	9	R2	All MCs	643	5.1	643	5.1	0.558	8.9	LOSA	6.3	46.2	0.21	0.58	0.21	45.6
All Vehicles 2088 7.2 2088 7.2 0.558 20.2 LOS C 11.3 98.6 0.47 0.50 0.47 27.2	Appro	oach		962	4.2	962	4.2	0.558	6.9	LOSA	6.3	46.2	0.19	0.47	0.19	44.6
All Verilloies 2000 1.2 2000 1.2 0.000 20.2 LOS 0 11.3 00.0 0.41 0.09 0.41 57.3	All Ve	hicles		2088	7.2	2088	7.2	0.558	20.2	LOS C	11.3	88.6	0.47	0.59	0.47	37.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

- 11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.
- * Critical Movement (Signal Timing)

Pedestrian Mov	/ement	Perforr	nance (C	CG)						
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	sec		ped	m ¯			sec	m	m/sec
Site: 101 [Raceco	urse_La	keside_l	Design_20	29_AM (WE	ST)]					
West: Racecourse	e Dr (W)									
P4 Full	23	54.2	LOS E	0.1	0.1	0.95	0.95	208.0	200.0	0.96
All Pedestrians	23	54.2	LOS E	0.1	0.1	0.95	0.95	208.0	200.0	0.96
Site: 101 [Raceco	urse_La	keside_l	_akeside E	xtended_De	sign_2029_ <i>i</i>	AM]				
West: Racecourse	e Dr (W)									
P4 Full	23	54.2	LOS E	0.1	0.1	0.95	0.95	208.0	200.0	0.96
All Pedestrians	23	54.2	LOS E	0.1	0.1	0.95	0.95	208.0	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GELEON | Licence: NETWORK / 1PC | Processed: Friday, 9 August 2024 10:19:42 AM
Project: P:\50890 BNC (1-105 Racecourse Rd, Cluden)\02. D&D\05. SIDRA\Masterplan\Design 1_Bruce Hwy_Lakeside Dr_Townsville Turf
Club Access_Stuart Dr.sip9

▼ Site: 303 [Precinct 1 & 2_Precinct 3_Design_2029_PM (Site)

Folder: Final Design 1)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

2029 Design Traffic Volumes Site Category: Proposed Design 2

Roundabout

Design Life Analysis (Final Year): Results for 5 years

Vehi	cle Mo	ovement	Perfo	rma	nce _										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of	95% Back	Of Queue		Eff.	Aver.	Aver.
ID		Class	اء ا Total]	lows HV 1		ows HV 1	Satn	Delay	Service	ſ Veh.	Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m			-,	km/h
South	n: Lake	side Dr E	xtende	d (S)											
1	L2	All MCs	27	0.0	27	0.0	0.214	5.9	LOSA	1.4	10.0	0.54	0.59	0.54	43.6
2	T1	All MCs	102	4.5	102	4.5	0.214	6.4	LOSA	1.4	10.0	0.54	0.59	0.54	36.0
3	R2	All MCs	89	0.0	89	0.0	0.214	10.4	LOS B	1.4	10.0	0.54	0.59	0.54	42.9
Appro	oach		219	2.1	219	2.1	0.214	8.0	LOSA	1.4	10.0	0.54	0.59	0.54	40.8
East:	Precir	nct 1 & 2 A	Access	(E)											
4	L2	All MCs	91	0.0	91	0.0	0.298	6.2	LOSA	2.0	14.6	0.58	0.63	0.58	38.7
5	T1	All MCs	1	0.0	1	0.0	0.298	6.5	LOSA	2.0	14.6	0.58	0.63	0.58	44.8
6	R2	All MCs	213	2.5	213	2.5	0.298	10.7	LOS B	2.0	14.6	0.58	0.63	0.58	38.7
Appro	oach		304	1.7	304	1.7	0.298	9.4	LOSA	2.0	14.6	0.58	0.63	0.58	38.7
North	: Lake	side Dr E	xtende	d (N)											
7	L2	All MCs	202	1.0	202	1.0	0.352	5.1	LOSA	2.6	18.7	0.43	0.51	0.43	45.4
8	T1	All MCs	172	4.7	172	4.7	0.352	5.5	LOSA	2.6	18.7	0.43	0.51	0.43	38.6
9	R2	All MCs	60	0.0	60	0.0	0.352	9.6	LOSA	2.6	18.7	0.43	0.51	0.43	44.7
Appro	oach		434	2.4	434	2.4	0.352	5.9	LOSA	2.6	18.7	0.43	0.51	0.43	43.5
West	: Preci	nct 3 Acce	ess (W)											
10	L2	All MCs	112	0.0	112	0.0	0.176	6.8	LOSA	1.1	7.7	0.61	0.64	0.61	40.0
11	T1	All MCs	1	0.0	1	0.0	0.176	7.1	LOSA	1.1	7.7	0.61	0.64	0.61	45.9
12	R2	All MCs	52	0.0	52	0.0	0.176	11.2	LOS B	1.1	7.7	0.61	0.64	0.61	40.0
Appro	oach		164	0.0	164	0.0	0.176	8.2	LOSA	1.1	7.7	0.61	0.64	0.61	40.1
All Ve	hicles		1122	1.8	1122	1.8	0.352	7.6	LOSA	2.6	18.7	0.52	0.58	0.52	41.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GELEON | Licence: NETWORK / 1PC | Processed: Friday, 9 August 2024 10:19:58 AM

Project: P:\50890 BNC (1-105 Racecourse Rd, Cluden)\02. D&D\05. SIDRA\Masterplan\Design 1_Bruce Hwy_Lakeside Dr_Townsville Turf Club Access_Stuart Dr.sip9

Design 1)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■■ Network: N101 [Racecourse_Lakeside_Townsv ille Turf Club Access_Design_2029_PM (Network Folder: Design)]

2029 Design Traffic Volumes Site Category: Proposed Design 1

Roundabout

Design Life Analysis (Final Year): Results for 5 years

Vehic	le M	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of	95% Back	Of Queue		Eff.	Aver.	Aver.
ID		Class		OWS	اء ا Total]	OWS	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m m		itate	Сусісз	km/h
South	: Stua	rt Dr (S)													
1	L2	All MCs	46	0.0	46	0.0	0.398	6.7	LOSA	2.8	19.9	0.57	0.57	0.57	54.8
2	T1	All MCs	748	3.9	748	3.9	0.398	8.1	LOSA	2.8	19.9	0.58	0.59	0.58	57.1
3	R2	All MCs	121	2.9	121	2.9	0.398	12.1	LOS B	2.7	19.2	0.59	0.62	0.59	51.7
3u	U	All MCs	1	0.0	1	0.0	0.398	14.4	LOS B	2.7	19.2	0.59	0.62	0.59	56.4
Appro	ach		916	3.6	916	3.6	0.398	8.6	LOSA	2.8	19.9	0.58	0.59	0.58	56.5
East:	Lakes	ide Dr Ex	tended	(E)											
4	L2	All MCs	174	2.7	174	2.7	0.449	9.5	LOSA	2.3	16.6	0.71	0.85	0.83	50.0
5	T1	All MCs	53	2.2	53	2.2	0.449	8.6	LOSA	2.3	16.6	0.71	0.85	0.83	47.7
6	R2	All MCs	86	1.4	86	1.4	0.449	13.2	LOS B	2.3	16.6	0.71	0.85	0.83	49.6
Appro	ach		313	2.2	313	2.2	0.449	10.4	LOS B	2.3	16.6	0.71	0.85	0.83	49.5
North:	Stua	rt Dr (N)													
7	L2	All MCs	61	0.0	61	0.0	0.385	6.0	LOSA	2.7	19.7	0.45	0.50	0.45	54.4
8	T1	All MCs	757	4.0	757	4.0	0.385	7.1	LOSA	2.7	19.7	0.45	0.53	0.45	57.6
9	R2	All MCs	173	0.6	173	0.6	0.385	11.1	LOS B	2.7	19.1	0.47	0.57	0.47	53.8
9u	U	All MCs	11	0.0	11	0.0	0.385	13.4	LOS B	2.7	19.1	0.47	0.57	0.47	56.7
Appro	ach		1001	3.2	1001	3.2	0.385	7.8	LOSA	2.7	19.7	0.46	0.54	0.46	56.8
West:	Edisc	on St (W)													
10	L2	All MCs	102	6.5	102	6.5	0.279	9.5	LOSA	1.2	8.7	0.68	0.79	0.68	52.7
11	T1	All MCs		3.0		3.0	0.279	8.1	LOSA	1.2	8.7	0.68	0.79	0.68	47.0
12	R2	All MCs		0.0		0.0	0.279	12.6	LOS B	1.2	8.7	0.68	0.79	0.68	53.5
12u	U	All MCs	1	0.0	1	0.0	0.279	14.7	LOS B	1.2	8.7	0.68	0.79	0.68	50.9
Appro	ach		164	4.8	164	4.8	0.279	9.6	LOSA	1.2	8.7	0.68	0.79	0.68	51.9
All Ve	hicles		2394	3.3	2394	3.3	0.449	8.6	LOSA	2.8	19.9	0.55	0.62	0.57	55.5
							-			-					

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

CCG MOVEMENT SUMMARY

□□ Common Control Group: CCG1 [Racecourse Dr]
Output produced by SIDRA INTERSECTION Version: 9.1.6.228

EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (CCG User-Given Phase Times) Design Life Analysis (Final Year): Results for 5 years

Vehi	cle M	ovement	Perfo	rma	nce (C	CCG)									
Mov ID	Turn	Mov Class	FI				Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
Site:	101 [R	acecours	e_Lake	eside _.	_Desig	n_20	29_PM (W	EST)]							
South	n: Lake	eside Dr (S)												
2	T1	All MCs	206	2.2	206	2.2	* 0.642	40.8	LOS D	5.7	40.9	0.85	0.67	0.86	19.7
3	R2	All MCs	70	16.5	70	16.5	0.507	57.6	LOS E	3.9	31.1	0.94	0.75	0.94	5.1
Appro	oach		276	5.9	276	5.9	0.642	45.1	LOS D	5.7	40.9	0.87	0.69	0.88	15.8
North	: Lake	side Dr (N	۷)												
7	L2	All MCs	227	4.6	227	4.6	0.244	26.8	LOS C	7.2	52.5	0.59	0.74	0.59	24.3
8	T1	All MCs	1162	1.5	1162	1.5	* 0.612	23.8	LOS C	24.9	176.9	0.76	0.68	0.76	24.9
Appro	oach		1389	2.0	1389	2.0	0.612	24.3	LOS C	24.9	176.9	0.73	0.69	0.73	23.3
West	: Race	course D	r (W)												
10	L2	All MCs	488	1.0	488	1.0	0.514	5.9	LOSA	8.4	60.6	0.42	0.63	0.42	49.2
11	T1	All MCs	375		375		0.514	29.7	LOS C	9.5	72.0	0.70	0.68	0.70	32.0
12	R2	All MCs	28	37.9		37.9	0.073	42.2	LOS D	1.2	11.3	0.79	0.71	0.79	25.6
Appro	oach		891	5.6	891	5.6	0.514	17.0	LOS B	9.5	72.0	0.55	0.65	0.55	40.9
All Ve	hicles		2556	3.7	2556	3.7	0.642	24.0	LOS C	24.9	176.9	0.68	0.68	0.68	29.6
Site:	101 [R	acecours	e_Lake	eside _.	_Lakes	ide E	xtended_[Design_2	029_PM]						
South	n: Lake	eside Dr E	xtende	d (S)											
1	L2	All MCs	286	2.0	286	2.0	0.623	15.7	LOS B	10.3	73.0	0.70	0.80	0.70	42.0
2	T1	All MCs	138	3.4	138	3.4	0.433	58.8	LOS E	4.0	28.9	0.99	0.76	0.99	10.0
Appro	oach		423	2.5	423	2.5	0.623	29.7	LOS C	10.3	73.0	0.79	0.78	0.79	30.4
East:	Race	course Dr	(E)												
4	L2	All MCs	98	5.9	98	5.9	0.078	6.2	LOS A	0.4	3.1	0.13	0.58	0.13	50.1
5	T1	All MCs	694	7.4	694	7.4	* 0.722	44.5	LOS D	18.8	140.2	0.97	0.85	0.99	34.8
6	R2	All MCs	114	5.1	114	5.1	0.246	43.6	LOS D	5.3	38.6	0.83	0.77	0.83	25.0
Appro	oach		906	6.9	906	6.9	0.722	40.3	LOS D	18.8	140.2	0.86	0.81	0.88	34.5
North	: Lake	side Dr (N	1)												
8	T1	All MCs	337	2.1	337	2.1	0.566	2.8	LOSA	5.5	38.9	0.18	0.35	0.18	32.3
9	R2	All MCs	858	1.9	858	1.9	0.566	7.6	LOSA	5.9	41.6	0.17	0.55	0.17	47.4
Appro	oach		1195	1.9	1195	1.9	0.566	6.2	LOSA	5.9	41.6	0.18	0.50	0.18	46.1
All Ve	hicles		2524	3.8	2524	3.8	0.722	22.4	LOS C	18.8	140.2	0.53	0.66	0.53	36.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mov	/ement	Perforr	nance (C	CG)						
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Que	Eff. Stop Rate	Travel Time		Aver. Speed
	ped/h	sec		ped	m			sec	m	m/sec
Site: 101 [Raceco	urse_La	keside_l	Design_20	29_PM (WE	ST)]					
West: Racecourse	e Dr (W)									
P4 Full	23	54.2	LOS E	0.1	0.1	0.95	0.95	208.0	200.0	0.96
All Pedestrians	23	54.2	LOS E	0.1	0.1	0.95	0.95	208.0	200.0	0.96
Site: 101 [Raceco	urse_La	keside_l	_akeside E	xtended_De	sign_2029_F	PM]				
West: Racecourse	e Dr (W)									
P4 Full	23	54.2	LOS E	0.1	0.1	0.95	0.95	208.0	200.0	0.96
All Pedestrians	23	54.2	LOS E	0.1	0.1	0.95	0.95	208.0	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GELEON | Licence: NETWORK / 1PC | Processed: Friday, 9 August 2024 10:19:58 AM
Project: P:\50890 BNC (1-105 Racecourse Rd, Cluden)\02. D&D\05. SIDRA\Masterplan\Design 1_Bruce Hwy_Lakeside Dr_Townsville Turf
Club Access_Stuart Dr.sip9

Site: 303 [Precinct 1 & 2_Precinct 3_Design_2029_Weekend

(Site Folder: Final Design 1)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: N101 [Racecourse_Lakeside_Townsv ille Turf Club Access_Design_2029_Weekend (Network Folder: Design)]

2029 Design Traffic Volumes Site Category: Proposed Design 2

Roundabout

Design Life Analysis (Final Year): Results for 5 years

Vehi	cle M	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of	95% Back	Of Queue		Eff.	Aver.	Aver.
ID		Class	Fi Total	lows HV 1		ows HV 1	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m			0,0.00	km/h
South	n: Lake	eside Dr E	xtende	d (S)											
1	L2	All MCs	42	0.0	42	0.0	0.239	6.5	LOSA	1.6	11.1	0.61	0.62	0.61	43.2
2	T1	All MCs	92	3.8	92	3.8	0.239	6.9	LOSA	1.6	11.1	0.61	0.62	0.61	35.3
3	R2	All MCs	95	0.0	95	0.0	0.239	10.9	LOS B	1.6	11.1	0.61	0.62	0.61	42.5
Appro	oach		229	1.5	229	1.5	0.239	8.5	LOS A	1.6	11.1	0.61	0.62	0.61	40.7
East:	Precir	nct 1 & 2 A	Access	(E)											
4	L2	All MCs	95	0.0	95	0.0	0.330	6.2	LOSA	2.3	16.4	0.59	0.63	0.59	38.5
5	T1	All MCs	1	0.0	1	0.0	0.330	6.5	LOSA	2.3	16.4	0.59	0.63	0.59	44.7
6	R2	All MCs	244	0.9	244	0.9	0.330	10.7	LOS B	2.3	16.4	0.59	0.63	0.59	38.5
Appro	oach		340	0.6	340	0.6	0.330	9.4	LOSA	2.3	16.4	0.59	0.63	0.59	38.6
North	: Lake	side Dr E	xtende	d (N)											
7	L2	All MCs	240	0.0	240	0.0	0.383	5.0	LOSA	3.1	21.5	0.44	0.51	0.44	45.3
8	T1	All MCs	144	8.0	144	8.0	0.383	5.4	LOSA	3.1	21.5	0.44	0.51	0.44	38.2
9	R2	All MCs	103	0.0	103	0.0	0.383	9.5	LOSA	3.1	21.5	0.44	0.51	0.44	44.5
Appro	oach		487	0.2	487	0.2	0.383	6.1	LOSA	3.1	21.5	0.44	0.51	0.44	43.8
West	: Preci	nct 3 Acce	ess (W)											
10	L2	All MCs	80	0.0	80	0.0	0.126	6.8	LOSA	8.0	5.3	0.61	0.64	0.61	40.1
11	T1	All MCs	1	0.0	1	0.0	0.126	7.1	LOSA	8.0	5.3	0.61	0.64	0.61	46.0
12	R2	All MCs	33	0.0	33	0.0	0.126	11.3	LOS B	0.8	5.3	0.61	0.64	0.61	40.1
Appro	oach		114	0.0	114	0.0	0.126	8.1	LOSA	8.0	5.3	0.61	0.64	0.61	40.2
All Ve	hicles		1170	0.6	1170	0.6	0.383	7.7	LOSA	3.1	21.5	0.53	0.58	0.53	41.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GELEON | Licence: NETWORK / 1PC | Processed: Friday, 9 August 2024 10:20:13 AM

Project: P:\50890 BNC (1-105 Racecourse Rd, Cluden)\02. D&D\05. SIDRA\Masterplan\Design 1_Bruce Hwy Lakeside Dr_Townsville Turf Club Access_Stuart Dr.sip9

▼ Site: 101 [Stuart_Edison_Design_2029_Weekend (Site)

Folder: Final Design 1)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■■ Network: N101 [Racecourse_Lakeside_Townsv ille Turf Club Access_Design_2029_Weekend (Network Folder: Design)]

2029 Design Traffic Volumes Site Category: Proposed Design 1

Roundabout

Design Life Analysis (Final Year): Results for 5 years

Mov Turn Mov Demand Arrival Deg. Sath Delay Service Serv	Vehic	cle M	ovemen	t Perfo	rma	nce										
Total HV Total HV Veh No No Veh No No Veh No No Veh No Veh No Veh No Veh No Veh No Veh		Turn									95% Back	Of Queue				
South: Stuart Dr (S) Stuart Dr (S)	טו		Class					Sain	Delay	Service	ſ Veh.	Dist 1	Que			Speed
1 L2 All MCs 25 8.7 25 8.7 0.282 6.2 LOSA 1.8 12.9 0.43 0.51 0.43 55.1 2 T1 All MCs 565 4.5 565 4.5 0.282 6.9 LOSA 1.8 12.9 0.43 0.53 0.43 57.6 3 R2 All MCs 119 2.0 119 2.0 0.282 11.2 LOSB 1.7 12.5 0.44 0.57 0.44 52.6 3u U All MCs 1 0.0 1 0.0 0.282 13.5 LOSB 1.7 12.5 0.44 0.57 0.44 56.9 Approach 710 4.2 710 4.2 0.282 7.6 LOSA 1.8 12.9 0.44 0.57 0.44 57.0 East: Lakeside Dr Extended (E) 4 L2 All MCs 160 0.7 160 0.7 0.340 7.6 LOSA 1.5 10.8 0.62 0.75 0.63 51.9 5 T1 All MCs 33 0.0 33 0.0 0.340 7.1 LOSA 1.5 10.8 0.62 0.75 0.63 49.0 6 R2 All MCs 76 0.0 76 0.0 0.340 11.7 LOSA 1.5 10.8 0.62 0.75 0.63 51.4 Approach 268 0.4 268 0.4 0.340 8.7 LOSA 1.5 10.8 0.62 0.75 0.63 51.4 North: Stuart Dr (N) 7 L2 All MCs 72 0.0 72 0.0 0.310 5.8 LOSA 1.5 10.8 0.62 0.75 0.63 51.4 North: Stuart Dr (N) 8 T1 All MCs 643 2.8 643 2.8 0.310 6.7 LOSA 2.0 14.3 0.40 0.50 0.40 58.3 9 R2 All MCs 100 2.2 100 2.2 0.310 11.0 LOSB 2.0 14.0 0.41 0.55 0.41 54.3 9u U All MCs 2 0.0 2 0.0 0.310 13.3 LOSB 2.0 14.0 0.41 0.55 0.41 57.3 Approach 818 2.5 818 2.5 0.310 7.2 LOSA 1.2 8.2 0.61 0.73 0.61 57.6 West: Edison St (W) 10 L2 All MCs 137 0.8 137 0.8 0.274 7.8 LOSA 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 12.6 LOSB 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 14.1 LOSB 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 14.1 LOSB 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 14.1 LOSB 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 14.1 LOSB 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 14.1 LOSB 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 14.1 LOSB 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOSA 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOSA 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOSA 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOSA 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOSA 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOSA 1.2 8.2 0.61 0.								v/c	sec						-,	km/h
2 T1 All MCs 565 4.5 565 4.5 565 4.5 0.282 6.9 LOS A 1.8 12.9 0.43 0.53 0.43 57.6 3 R2 All MCs 119 2.0 119 2.0 0.282 11.2 LOS B 1.7 12.5 0.44 0.57 0.44 52.6 3u U All MCs 1 0.0 1 0.0 0.282 13.5 LOS B 1.7 12.5 0.44 0.57 0.44 55.6 Approach 710 4.2 710 4.2 0.282 7.6 LOS A 1.8 12.9 0.44 0.57 0.44 55.9 Approach 710 4.2 710 4.2 0.282 7.6 LOS A 1.8 12.9 0.44 0.54 0.44 57.0 East: Lakeside Dr Extended (E) 4 L2 All MCs 160 0.7 160 0.7 0.340 7.6 LOS A 1.5 10.8 0.62 0.75 0.63 51.9 5 T1 All MCs 33 0.0 33 0.0 0.340 7.1 LOS A 1.5 10.8 0.62 0.75 0.63 49.0 6 R2 All MCs 76 0.0 76 0.0 0.340 11.7 LOS B 1.5 10.8 0.62 0.75 0.63 51.4 Approach 268 0.4 268 0.4 0.340 8.7 LOS A 1.5 10.8 0.62 0.75 0.63 51.4 North: Stuart Dr (N) 7 L2 All MCs 72 0.0 72 0.0 0.310 5.8 LOS A 2.0 14.3 0.40 0.50 0.40 54.9 8 T1 All MCs 643 2.8 643 2.8 0.310 6.7 LOS A 2.0 14.3 0.40 0.52 0.40 58.3 9 R2 All MCs 100 2.2 100 2.2 0.310 11.0 LOS B 2.0 14.0 0.41 0.55 0.41 54.3 9u U All MCs 2 0.0 2 0.0 0.310 13.3 LOS B 2.0 14.0 0.41 0.55 0.41 57.3 Approach 818 2.5 818 2.5 0.310 7.2 LOS A 2.0 14.3 0.40 0.52 0.40 57.6 West: Edison St (W) 10 L2 All MCs 137 0.8 137 0.8 137 0.8 0.274 7.8 LOS A 1.2 8.2 0.61 0.73 0.61 54.6 11 T1 All MCs 34 3.4 34 3.4 0.274 7.5 LOS A 1.2 8.2 0.61 0.73 0.61 54.6 Approach 190 2.4 190 2.4 0.274 12.6 LOS B 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 14.1 LOS B 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LO	South	: Stua	rt Dr (S)													
3 R2 All MCs 119 2.0 119 2.0 0.282 11.2 LOS B 1.7 12.5 0.44 0.57 0.44 52.6 3u U All MCs 1 0.0 1 0.0 0.282 13.5 LOS B 1.7 12.5 0.44 0.57 0.44 56.9 Approach 710 4.2 710 4.2 0.282 7.6 LOS A 1.8 12.9 0.44 0.54 0.44 57.0 East: Lakeside Dr Extended (E) East: Lakeside Dr Extended (E) 4 L2 All MCs 160 0.7 160 0.7 0.340 7.6 LOS A 1.5 10.8 0.62 0.75 0.63 51.9 5 T1 All MCs 30 0.0 76 0.0 0.340 11.7 LOS A 1.5 10.8 0.62 0.75 0.63 51.9 4 L2 All MCs 72 0.0 72	1	L2	All MCs	25	8.7	25	8.7	0.282	6.2	LOSA	1.8	12.9	0.43	0.51	0.43	55.1
3u U All MCs 1 0.0 1 0.0 0.282 13.5 LOS B 1.7 12.5 0.44 0.57 0.44 56.9 Approach 710 4.2 710 4.2 0.282 7.6 LOS A 1.8 12.9 0.44 0.54 0.44 57.0 East: Lakeside Dr Extended (E) 4 L2 All MCs 160 0.7 160 0.7 0.340 7.6 LOS A 1.5 10.8 0.62 0.75 0.63 51.9 5 T1 All MCs 30 0.0 340 0.340 7.1 LOS A 1.5 10.8 0.62 0.75 0.63 51.9 6 R2 All MCs 76 0.0 76 0.0 0.340 11.7 LOS A 1.5 10.8 0.62 0.75 0.63 51.4 Approach 268 0.4 268 0.4 0.340 8.7 LOS A 2.0 14.3	2	T1	All MCs	565	4.5	565	4.5	0.282	6.9	LOSA	1.8	12.9	0.43	0.53	0.43	57.6
Approach 710 4.2 710 4.2 0.282 7.6 LOS A 1.8 12.9 0.44 0.54 0.44 57.0 East: Lakeside Dr Extended (E) 4 L2 All MCs 160 0.7 160 0.7 0.340 7.6 LOS A 1.5 10.8 0.62 0.75 0.63 51.9 5 T1 All MCs 33 0.0 33 0.0 0.340 7.1 LOS A 1.5 10.8 0.62 0.75 0.63 49.0 6 R2 All MCs 76 0.0 76 0.0 0.340 11.7 LOS B 1.5 10.8 0.62 0.75 0.63 51.4 Approach 268 0.4 268 0.4 0.340 8.7 LOS A 1.5 10.8 0.62 0.75 0.63 51.4 North: Stuart Dr (N) 7 L2 All MCs 72 0.0 72 0.0 0.310 5.8 LOS A 2.0 14.3 0.40 0.50 0.40 54.9 8 T1 All MCs 643 2.8 643 2.8 0.310 6.7 LOS A 2.0 14.3 0.40 0.52 0.40 58.3 9 R2 All MCs 100 2.2 100 2.2 0.310 11.0 LOS B 2.0 14.0 0.41 0.55 0.41 54.3 9u U All MCs 2 0.0 2 0.0 0.310 13.3 LOS B 2.0 14.0 0.41 0.55 0.41 57.3 Approach 818 2.5 818 2.5 0.310 7.2 LOS A 2.0 14.3 0.40 0.52 0.40 57.6 West: Edison St (W) 10 L2 All MCs 137 0.8 137 0.8 0.274 7.8 LOS A 1.2 8.2 0.61 0.73 0.61 54.6 11 T1 All MCs 34 3.4 34 3.4 0.274 7.5 LOS A 1.2 8.2 0.61 0.73 0.61 54.6 Approach 190 2.4 190 2.4 0.274 14.1 LOS B 1.2 8.2 0.61 0.73 0.61 51.4 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 51.6	3	R2	All MCs	119	2.0	119	2.0	0.282	11.2	LOS B	1.7	12.5	0.44	0.57	0.44	52.6
East: Lakeside Dr Extended (E) 4	3u	U	All MCs	1	0.0	1	0.0	0.282	13.5	LOS B	1.7	12.5	0.44	0.57	0.44	56.9
4 L2 All MCs 160 0.7 160 0.7 0.340 7.6 LOS A 1.5 10.8 0.62 0.75 0.63 51.9 5 T1 All MCs 33 0.0 33 0.0 0.340 7.1 LOS A 1.5 10.8 0.62 0.75 0.63 49.0 6 R2 All MCs 76 0.0 76 0.0 0.340 11.7 LOS B 1.5 10.8 0.62 0.75 0.63 51.4 Approach 268 0.4 268 0.4 0.340 8.7 LOS A 1.5 10.8 0.62 0.75 0.63 51.4 North: Stuart Dr (N) 7 L2 All MCs 72 0.0 72 0.0 0.310 5.8 LOS A 2.0 14.3 0.40 0.50 0.40 54.9 8 T1 All MCs 643 2.8 643 2.8 0.310 6.7 LOS A 2.0 14.3 0.40 0.52 0.40 58.3 9 R2 All MCs 100 2.2 100 2.2 0.310 11.0 LOS B 2.0 14.0 0.41 0.55 0.41 54.3 9u U All MCs 2 0.0 2 0.0 0.310 13.3 LOS B 2.0 14.0 0.41 0.55 0.41 57.3 Approach 818 2.5 818 2.5 0.310 7.2 LOS A 2.0 14.3 0.40 0.52 0.40 57.6 West: Edison St (W) 10 L2 All MCs 137 0.8 137 0.8 0.274 7.8 LOS A 1.2 8.2 0.61 0.73 0.61 54.6 11 T1 All MCs 34 3.4 3.4 3.4 0.274 7.5 LOS A 1.2 8.2 0.61 0.73 0.61 54.6 12 R2 All MCs 1812.5 1812.5 0.274 12.6 LOS B 1.2 8.2 0.61 0.73 0.61 51.4 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 53.6	Appro	ach		710	4.2	710	4.2	0.282	7.6	LOSA	1.8	12.9	0.44	0.54	0.44	57.0
5 T1 All MCs 33 0.0 33 0.0 0.340 7.1 LOS A 1.5 10.8 0.62 0.75 0.63 49.0 6 R2 All MCs 76 0.0 76 0.0 0.340 11.7 LOS A 1.5 10.8 0.62 0.75 0.63 51.4 Approach 268 0.4 268 0.4 0.340 8.7 LOS A 1.5 10.8 0.62 0.75 0.63 51.4 North: Stuart Dr (N) 7 L2 All MCs 72 0.0 72 0.0 0.310 5.8 LOS A 2.0 14.3 0.40 0.50 0.40 54.9 8 T1 All MCs 643 2.8 0.310 6.7 LOS A 2.0 14.3 0.40 0.52 0.40 58.3 9 R2 All MCs 100 2.2 0.310 13.3 LOS B 2.0 14.0 0.41 0.55 </td <td>East:</td> <td>Lakes</td> <td>ide Dr Ex</td> <td>ktended</td> <td>(E)</td> <td></td>	East:	Lakes	ide Dr Ex	ktended	(E)											
6 R2 All MCs 76 0.0 76 0.0 0.340 11.7 LOS B 1.5 10.8 0.62 0.75 0.63 51.4 Approach 268 0.4 268 0.4 0.340 8.7 LOS A 1.5 10.8 0.62 0.75 0.63 51.4 North: Stuart Dr (N) 7 L2 All MCs 72 0.0 72 0.0 0.310 5.8 LOS A 2.0 14.3 0.40 0.50 0.40 54.9 8 T1 All MCs 643 2.8 643 2.8 0.310 6.7 LOS A 2.0 14.3 0.40 0.52 0.40 58.3 9 R2 All MCs 100 2.2 100 2.2 0.310 11.0 LOS B 2.0 14.0 0.41 0.55 0.41 54.3 9u U All MCs 2 0.0 2 0.0 0.310 7.2 LOS A 2.0 14.3 0.40 0.52 0.40 57.3 Approach 818 2.5 818 2.5 0.310 7.2 LOS A 2.0 14.3 0.40 0.52 0.40 57.6 West: Edison St (W) 10 L2 All MCs 137 0.8 137 0.8 0.274 7.8 LOS A 1.2 8.2 0.61 0.73 0.61 54.6 11 T1 All MCs 34 3.4 34 3.4 0.274 7.5 LOS A 1.2 8.2 0.61 0.73 0.61 54.6 12 R2 All MCs 18 12.5 18 12.5 0.274 12.6 LOS B 1.2 8.2 0.61 0.73 0.61 51.4 12u U All MCs 1 0.0 1 0.0 0.274 14.1 LOS B 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 53.6	4	L2	All MCs	160	0.7	160	0.7	0.340	7.6	LOSA	1.5	10.8	0.62	0.75	0.63	51.9
Approach 268 0.4 268 0.4 0.340 8.7 LOS A 1.5 10.8 0.62 0.75 0.63 51.4 North: Stuart Dr (N) 7 L2 All MCs 72 0.0 72 0.0 0.310 5.8 LOS A 2.0 14.3 0.40 0.50 0.40 54.9 8 T1 All MCs 643 2.8 643 2.8 0.310 6.7 LOS A 2.0 14.3 0.40 0.52 0.40 58.3 9 R2 All MCs 100 2.2 100 2.2 0.310 11.0 LOS B 2.0 14.0 0.41 0.55 0.41 54.3 9u U All MCs 2 0.0 2 0.0 0.310 7.2 LOS B 2.0 14.0 0.41 0.55 0.41 57.3 Approach 818 2.5 818 2.5 0.310 7.2 LOS A 1.2 8.2 0.61 0.73 0.61 57.6 West: Edison St (W)	5	T1	All MCs	33	0.0	33	0.0	0.340	7.1	LOSA	1.5	10.8	0.62	0.75	0.63	49.0
North: Stuart Dr (N) 7	6	R2	All MCs	76	0.0	76	0.0	0.340	11.7	LOS B	1.5	10.8	0.62	0.75	0.63	51.4
7 L2 All MCs 72 0.0 72 0.0 0.310 5.8 LOS A 2.0 14.3 0.40 0.50 0.40 54.9 8 T1 All MCs 643 2.8 643 2.8 0.310 6.7 LOS A 2.0 14.3 0.40 0.52 0.40 58.3 9 R2 All MCs 100 2.2 100 2.2 0.310 11.0 LOS B 2.0 14.0 0.41 0.55 0.41 54.3 9u U All MCs 2 0.0 2 0.0 0.310 13.3 LOS B 2.0 14.0 0.41 0.55 0.41 57.3 Approach 818 2.5 818 2.5 0.310 7.2 LOS A 2.0 14.3 0.40 0.52 0.40 57.6 West: Edison St (W) 10 L2 All MCs 137 0.8 137 0.8 0.274 7.8 LOS A 1.2 8.2 0.61 0.73 0.61 54.6 11 T1 All MCs 34 3.4 34 3.4 0.274 7.5 LOS A 1.2 8.2 0.61 0.73 0.61 48.2 12 R2 All MCs 1812.5 1812.5 0.274 12.6 LOS B 1.2 8.2 0.61 0.73 0.61 51.4 12u U All MCs 1 0.0 1 0.0 0.274 14.1 LOS B 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 53.6	Appro	ach		268	0.4	268	0.4	0.340	8.7	LOSA	1.5	10.8	0.62	0.75	0.63	51.4
8 T1 All MCs 643 2.8 643 2.8 0.310 6.7 LOS A 2.0 14.3 0.40 0.52 0.40 58.3 9 R2 All MCs 100 2.2 100 2.2 0.310 11.0 LOS B 2.0 14.0 0.41 0.55 0.41 54.3 9u U All MCs 2 0.0 2 0.0 0.310 13.3 LOS B 2.0 14.0 0.41 0.55 0.41 57.3 Approach 818 2.5 818 2.5 0.310 7.2 LOS A 2.0 14.3 0.40 0.52 0.40 57.6 West: Edison St (W) 10 L2 All MCs 137 0.8 137 0.8 0.274 7.8 LOS A 1.2 8.2 0.61 0.73 0.61 54.6 11 T1 All MCs 34 3.4 34 3.4 0.274 7.5 LOS A 1.2 8.2 0.61 0.73 0.61 48.2 12 R2 All MCs 1812.5 1812.5 0.274 12.6 LOS B 1.2 8.2 0.61 0.73 0.61 51.4 12u U All MCs 1 0.0 1 0.0 0.274 14.1 LOS B 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 53.6	North	Stua	rt Dr (N)													
9 R2 All MCs 100 2.2 100 2.2 0.310 11.0 LOS B 2.0 14.0 0.41 0.55 0.41 54.3 9u U All MCs 2 0.0 2 0.0 0.310 13.3 LOS B 2.0 14.0 0.41 0.55 0.41 57.3 Approach 818 2.5 818 2.5 0.310 7.2 LOS A 2.0 14.3 0.40 0.52 0.40 57.6 West: Edison St (W) 10 L2 All MCs 137 0.8 137 0.8 0.274 7.8 LOS A 1.2 8.2 0.61 0.73 0.61 54.6 11 T1 All MCs 34 3.4 34 3.4 0.274 7.5 LOS A 1.2 8.2 0.61 0.73 0.61 48.2 12 R2 All MCs 18 12.5 18 12.5 0.274 12.6 LOS B 1.2 8.2 0.61 0.73 0.61 51.4 12u U All MCs 1 0.0 1 0.0 0.274 14.1 LOS B 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 53.6	7	L2	All MCs	72	0.0	72	0.0	0.310	5.8	LOSA	2.0	14.3	0.40	0.50	0.40	54.9
9u U All MCs 2 0.0 2 0.0 0.310 13.3 LOS B 2.0 14.0 0.41 0.55 0.41 57.3 Approach 818 2.5 818 2.5 0.310 7.2 LOS A 2.0 14.3 0.40 0.52 0.40 57.6 West: Edison St (W) 10 L2 All MCs 137 0.8 137 0.8 0.274 7.8 LOS A 1.2 8.2 0.61 0.73 0.61 54.6 11 T1 All MCs 34 3.4 3.4 0.274 7.5 LOS A 1.2 8.2 0.61 0.73 0.61 54.6 12 R2 All MCs 18 12.5 18 12.5 0.274 7.5 LOS A 1.2 8.2 0.61 0.73 0.61 51.4 12u U All MCs 1 0.0 1 0.0 0.274 14.1 LOS	8	T1	All MCs	643	2.8	643	2.8	0.310	6.7	LOSA	2.0	14.3	0.40	0.52	0.40	58.3
Approach 818 2.5 818 2.5 0.310 7.2 LOS A 2.0 14.3 0.40 0.52 0.40 57.6 West: Edison St (W) 10 L2 All MCs 137 0.8 137 0.8 0.274 7.8 LOS A 1.2 8.2 0.61 0.73 0.61 54.6 11 T1 All MCs 34 3.4 3.4 0.274 7.5 LOS A 1.2 8.2 0.61 0.73 0.61 48.2 12 R2 All MCs 18 12.5 18 12.5 0.274 12.6 LOS B 1.2 8.2 0.61 0.73 0.61 51.4 12u U All MCs 1 0.0 1 0.0 0.274 14.1 LOS B 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 53.6	9	R2	All MCs	100	2.2	100	2.2	0.310	11.0	LOS B	2.0	14.0	0.41	0.55	0.41	54.3
West: Edison St (W) 10 L2 All MCs 137 0.8 137 0.8 0.274 7.8 LOS A 1.2 8.2 0.61 0.73 0.61 54.6 11 T1 All MCs 34 3.4 34 3.4 0.274 7.5 LOS A 1.2 8.2 0.61 0.73 0.61 48.2 12 R2 All MCs 1812.5 1812.5 0.274 12.6 LOS B 1.2 8.2 0.61 0.73 0.61 51.4 12u U All MCs 1 0.0 1 0.0 0.274 14.1 LOS B 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 53.6	9u	U	All MCs	2	0.0	2	0.0	0.310	13.3	LOS B	2.0	14.0	0.41	0.55	0.41	57.3
10 L2 All MCs 137 0.8 137 0.8 0.274 7.8 LOS A 1.2 8.2 0.61 0.73 0.61 54.6 11 T1 All MCs 34 3.4 3.4 0.274 7.5 LOS A 1.2 8.2 0.61 0.73 0.61 48.2 12 R2 All MCs 18 12.5 12.74 12.6 LOS B 1.2 8.2 0.61 0.73 0.61 51.4 12u U All MCs 1 0.0 1 0.0 0.274 14.1 LOS B 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 53.6	Appro	ach		818	2.5	818	2.5	0.310	7.2	LOSA	2.0	14.3	0.40	0.52	0.40	57.6
11 T1 All MCs 34 3.4 34 3.4 0.274 7.5 LOS A 1.2 8.2 0.61 0.73 0.61 48.2 12 R2 All MCs 18 12.5 18 12.5 0.274 12.6 LOS B 1.2 8.2 0.61 0.73 0.61 51.4 12u U All MCs 1 0.0 1 0.0 0.274 14.1 LOS B 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 53.6	West:	Edisc	on St (W)													
12 R2 All MCs 18 12.5 18 12.5 0.274 12.6 LOS B 1.2 8.2 0.61 0.73 0.61 51.4 12u U All MCs 1 0.0 1 0.0 0.274 14.1 LOS B 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 53.6	10	L2	All MCs	137	0.8	137	0.8	0.274	7.8	LOS A	1.2	8.2	0.61	0.73	0.61	54.6
12u U All MCs 1 0.0 1 0.0 0.274 14.1 LOS B 1.2 8.2 0.61 0.73 0.61 51.6 Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 53.6	11	T1	All MCs	34	3.4	34	3.4	0.274	7.5	LOSA	1.2	8.2	0.61	0.73	0.61	48.2
Approach 190 2.4 190 2.4 0.274 8.3 LOS A 1.2 8.2 0.61 0.73 0.61 53.6	12	R2	All MCs	18	12.5	18	12.5	0.274	12.6	LOS B	1.2	8.2	0.61	0.73	0.61	51.4
	12u	U	All MCs	1	0.0	1	0.0	0.274	14.1	LOS B	1.2	8.2	0.61	0.73	0.61	51.6
All Vehicles 1987 2.8 1987 2.8 0.340 7.6 LOS A 2.0 14.3 0.47 0.58 0.47 56.3	Appro	ach		190	2.4	190	2.4	0.274	8.3	LOSA	1.2	8.2	0.61	0.73	0.61	53.6
	All Ve	hicles		1987	2.8	1987	2.8	0.340	7.6	LOSA	2.0	14.3	0.47	0.58	0.47	56.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

CCG MOVEMENT SUMMARY

□□ Common Control Group: CCG1 [Racecourse Dr]
Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Racecourse_Lakeside_Townsv ille Turf Club
Access_Design_2029_Weekend
(Network Folder: Design)]

EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (CCG User-Given Phase Times) Design Life Analysis (Final Year): Results for 5 years

Vehi	cle M	ovement	t Perfo	rma	nce (C	CG)									
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back ([Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
Site:	101 [R	acecours	e_Lake	eside	_Desig	n_20	29_Weeke	end (WES	ST)]						
South	n: Lake	eside Dr (S)												
2	T1	All MCs	318	1.5	318	1.5	* 0.657	26.1	LOS C	7.3	51.9	0.70	0.57	0.71	25.9
3	R2	All MCs	89	6.5	89	6.5	0.401	44.2	LOS D	4.0	29.9	0.79	0.74	0.79	6.5
Appro	oach		407	2.6	407	2.6	0.657	30.1	LOS C	7.3	51.9	0.72	0.61	0.73	21.4
North	: Lake	side Dr (N	۷)												
7	L2	All MCs	223	5.2	223	5.2	0.230	24.9	LOS C	6.7	49.1	0.56	0.73	0.56	25.5
8	T1	All MCs	1227	0.5	1227	0.5	* 0.611	21.9	LOS C	25.4	178.9	0.74	0.67	0.74	26.1
Appro	oach		1450	1.2	1450	1.2	0.611	22.4	LOS C	25.4	178.9	0.71	0.68	0.71	24.4
West	: Race	course D	r (W)												
10	L2	All MCs	388	1.8	388	1.8	0.561	6.3	LOSA	13.2	94.5	0.62	0.70	0.62	44.7
11	T1	All MCs	439	4.5	439	4.5	* 0.561	42.3	LOS D	13.2	94.5	0.83	0.75	0.83	27.9
12	R2	All MCs	3	0.0	3	0.0	0.010	48.2	LOS D	0.2	1.1	0.84	0.63	0.84	23.5
Appro	oach		831	3.2	831	3.2	0.561	25.5	LOS C	13.2	94.5	0.74	0.73	0.74	35.3
All Ve	hicles		2687	2.0	2687	2.0	0.657	24.5	LOS C	25.4	178.9	0.72	0.68	0.72	28.6
Site:	101 [R	acecours	e_Lake	eside	_Lakes	ide E	xtended_[Design_2	.029_Wee	kend]					
South	n: Lake	side Dr E	xtende	d (S))										
1	L2	All MCs	194	1.2	194	1.2	0.323	9.4	LOSA	3.3	23.6	0.37	0.67	0.37	46.9
2	T1	All MCs	222	1.6	222	1.6	0.459	53.9	LOS D	6.2	43.9	0.97	0.77	0.97	10.8
Appro	oach		416	1.4	416	1.4	0.459	33.1	LOS C	6.2	43.9	0.69	0.72	0.69	25.9
East:	Raced	course Dr	(E)												
4	L2	All MCs	84	1.4	84	1.4	0.068	6.1	LOSA	0.4	2.5	0.13	0.58	0.13	50.1
5	T1	All MCs	476	2.9	476	2.9	0.679	50.4	LOS D	13.3	95.5	0.99	0.83	1.00	33.0
6	R2	All MCs	155	5.3	155	5.3	0.471	53.6	LOS D	8.2	60.2	0.94	0.80	0.94	22.0
Appro	oach		715	3.3	715	3.3	0.679	45.9	LOS D	13.3	95.5	0.88	0.80	0.89	31.7
North	: Lake	side Dr (N	۷)												
8	T1	All MCs	403	0.3	403	0.3	0.523	1.6	LOSA	3.3	22.9	0.11	0.24	0.11	39.3
9	R2	All MCs	822	0.7	822	0.7	0.523	6.6	LOSA	4.1	29.2	0.11	0.54	0.11	48.3
Appro	oach		1225	0.6	1225	0.6	0.523	5.0	LOSA	4.1	29.2	0.11	0.44	0.11	47.5
All Ve	ehicles		2356	1.5	2356	1.5	0.679	22.4	LOS C	13.3	95.5	0.45	0.60	0.45	35.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mov	vement	Perforr	nance (C	CG)						
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	sec		ped	m			sec	m	m/sec
Site: 101 [Raceco	ourse_La	keside_l	Design_20	29_Weekend	d (WEST)]					
West: Racecours	e Dr (W)									
P4 Full	6	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96
All Pedestrians	6	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96
Site: 101 [Raceco	ourse_La	keside_l	_akeside E	xtended_De	sign_2029_\	Weekend]				
West: Racecours	e Dr (W)									
P4 Full	58	54.3	LOS E	0.2	0.2	0.95	0.95	208.1	200.0	0.96
All Pedestrians	58	54.3	LOS E	0.2	0.2	0.95	0.95	208.1	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GELEON | Licence: NETWORK / 1PC | Processed: Friday, 9 August 2024 10:20:13 AM
Project: P:\50890 BNC (1-105 Racecourse Rd, Cluden)\02. D&D\05. SIDRA\Masterplan\Design 1_Bruce Hwy_Lakeside Dr_Townsville Turf
Club Access_Stuart Dr.sip9

Site: 404 [Precinct 1 & 2_Precinct 3_Design_2039_AM (Site

Folder: Final Design 1)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: N101 [Racecourse_Lakeside_Townsv ille Turf Club Access_Design_2039_AM (Network Folder: Design)]

2039 Design Traffic Volumes Site Category: Proposed Design 2

Roundabout

Design Life Analysis (Final Year): Results for 15 years

Vehi	cle Mo	ovemen	t Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of	95% Back	Of Queue		Eff.	Aver.	Aver.
ID		Class		lows	ا-ا ا Total]	OWS	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m m		Male	Cycles	km/h
South	ı: Lake	side Dr E	xtende												
1	L2	All MCs	51	0.0	51	0.0	0.277	6.1	LOSA	1.9	13.5	0.58	0.58	0.58	44.0
2	T1	All MCs	164	6.9	164	6.9	0.277	6.7	LOSA	1.9	13.5	0.58	0.58	0.58	36.5
3	R2	All MCs	62	0.0	62	0.0	0.277	10.6	LOS B	1.9	13.5	0.58	0.58	0.58	43.3
Appro	oach		277	4.1	277	4.1	0.277	7.5	LOSA	1.9	13.5	0.58	0.58	0.58	40.5
East:	Precir	nct 1 & 2 /	Access	(E)											
4	L2	All MCs	79	0.0	79	0.0	0.257	6.2	LOSA	1.7	12.2	0.57	0.63	0.57	38.8
5	T1	All MCs	1	0.0	1	0.0	0.257	6.5	LOSA	1.7	12.2	0.57	0.63	0.57	44.9
6	R2	All MCs	179	3.5	179	3.5	0.257	10.8	LOS B	1.7	12.2	0.57	0.63	0.57	38.8
Appro	oach		259	2.4	259	2.4	0.257	9.4	LOSA	1.7	12.2	0.57	0.63	0.57	38.8
North	: Lake	side Dr E	xtende	d (N)											
7	L2	All MCs	152	2.8	152	2.8	0.319	4.7	LOSA	2.4	17.1	0.34	0.50	0.34	45.0
8	T1	All MCs	157	9.0	157	9.0	0.319	5.2	LOS A	2.4	17.1	0.34	0.50	0.34	38.7
9	R2	All MCs	108	0.0	108	0.0	0.319	9.2	LOS A	2.4	17.1	0.34	0.50	0.34	44.7
Appro	oach		417	4.4	417	4.4	0.319	6.0	LOSA	2.4	17.1	0.34	0.50	0.34	43.4
West	Preci	nct 3 Acc	ess (W)											
10	L2	All MCs	64	0.0	64	0.0	0.102	6.6	LOSA	0.6	4.3	0.59	0.63	0.59	40.3
11	T1	All MCs	1	0.0	1	0.0	0.102	6.9	LOSA	0.6	4.3	0.59	0.63	0.59	46.1
12	R2	All MCs	29	0.0	29	0.0	0.102	11.1	LOS B	0.6	4.3	0.59	0.63	0.59	40.3
Appro	ach		95	0.0	95	0.0	0.102	8.0	LOSA	0.6	4.3	0.59	0.63	0.59	40.4
All Ve	hicles		1048	3.4	1048	3.4	0.319	7.4	LOSA	2.4	17.1	0.48	0.57	0.48	41.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GELEON | Licence: NETWORK / 1PC | Processed: Tuesday, 3 September 2024 10:53:45 AM Project: P:\50890 BNC (1-105 Racecourse Rd, Cluden)\02. D&D\05. SIDRA\Masterplan\Design 1_Bruce Hwy_Lakeside Dr_Townsville Turf Club Access_Stuart Dr.sip9

Design 1)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■■ Network: N101 [Racecourse_Lakeside_Townsv ille Turf Club Access_Design_2039_AM (Network Folder: Design)]

2039 Design Traffic Volumes Site Category: Proposed Design 1

Roundabout

Design Life Analysis (Final Year): Results for 15 years

Vehic	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem F	nand lows		rival ows	Deg. Satn	Aver. Delav	Level of Service	95% Back	Of Queue	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
,5		Olass	[Total	HV]	[Total l	HV]			00,1100	[Veh.	Dist]	Quo	Rate	Cycles	
0 "		1 D (O)	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	ı: Stua	rt Dr (S)													
1	L2	All MCs		14.6		14.6	0.490	6.7	LOSA	3.8	28.7	0.54	0.53	0.54	54.4
2	T1	All MCs	989		989		0.490	8.8	LOSA	3.8	28.7	0.55	0.55	0.55	56.2
3	R2	All MCs	164		164		0.490	11.7	LOS B	3.7	27.6	0.56	0.58	0.56	52.1
3u	U	All MCs	2	0.0	2	0.0	0.490	13.8	LOS B	3.7	27.6	0.56	0.58	0.56	56.6
Appro	ach		1205	8.3	1205	8.3	0.490	9.1	LOSA	3.8	28.7	0.55	0.56	0.55	55.8
East:	Lakes	ide Dr Ex	tended	(E)											
4	L2	All MCs	154	6.4	154	6.4	0.405	10.1	LOS B	2.0	14.6	0.71	0.85	0.80	49.0
5	T1	All MCs	33	8.7	33	8.7	0.405	8.7	LOSA	2.0	14.6	0.71	0.85	0.80	47.5
6	R2	All MCs	78	1.8	78	1.8	0.405	13.0	LOS B	2.0	14.6	0.71	0.85	0.80	49.5
Appro	ach		264	5.4	264	5.4	0.405	10.8	LOS B	2.0	14.6	0.71	0.85	0.80	48.9
North	: Stua	rt Dr (N)													
7	L2	All MCs	58	2.4	58	2.4	0.420	6.5	LOSA	3.0	22.8	0.54	0.54	0.54	53.6
8	T1	All MCs	825	10.3	825	10.3	0.420	8.1	LOSA	3.0	22.8	0.55	0.56	0.55	55.8
9	R2	All MCs	89	2.7	89	2.7	0.420	11.7	LOS B	2.9	21.9	0.56	0.59	0.56	53.7
9u	U	All MCs	16	0.0	16	0.0	0.420	13.9	LOS B	2.9	21.9	0.56	0.59	0.56	56.6
Appro	ach		989	9.0	989	9.0	0.420	8.4	LOSA	3.0	22.8	0.55	0.56	0.55	55.6
West	Edisc	on St (W)													
10	L2	All MCs	199	1.2	199	1.2	0.552	14.7	LOS B	3.1	21.9	0.80	0.97	1.05	51.2
11	T1	All MCs	56	5.1	56	5.1	0.552	12.1	LOS B	3.1	21.9	0.80	0.97	1.05	43.3
12	R2	All MCs	28	0.0		0.0	0.552	16.3	LOS B	3.1	21.9	0.80	0.97	1.05	51.0
12u	U	All MCs	1	0.0	1	0.0	0.552	18.4	LOS B	3.1	21.9	0.80	0.97	1.05	48.6
Appro	ach		284	1.9	284	1.9	0.552	14.4	LOS B	3.1	21.9	0.80	0.97	1.05	50.2
All Ve	hicles		2742	7.6	2742	7.6	0.552	9.6	LOSA	3.8	28.7	0.59	0.63	0.62	54.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

CCG MOVEMENT SUMMARY

□□ Common Control Group: CCG1 [Racecourse Dr]
Output produced by SIDRA INTERSECTION Version: 9.1.6.228

EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (CCG User-Given Phase Times) Design Life Analysis (Final Year): Results for 15 years

No. No.	Vehi	cle M	ovement	Perfo	rma	nce (C	CG)									
South: Lakeside Dr (S) South: Lakeside Dr		Turn		FI [Total]	ows HV]	FI Total I]	ows HV]	Satn	Delay		[Veh.	Dist]		Stop	No. of	Speed
2 T1 All MCs 321 3.1 321 3.1 *0.839 40.4 LOS D 9.4 67.7 0.94 0.79 1.01 19.8 3 R2 All MCs 102 18.1 102 18.1 0.618 55.7 LOS E 5.7 45.7 0.95 0.78 0.96 5.2 Approach 422 6.7 422 6.7 0.839 44.1 LOS D 9.4 67.7 0.94 0.79 1.00 16.3 North: Latestier Dr (Site:	202 [R	acecours	e_Lake	side_	_Desig	n_20	39_AM (V	/EST)]							
3 R2 All MCs 102 18.1 102 18.1 102 18.1 0.618 55.7 LOS E 5.7 45.7 0.95 0.78 0.96 5.2 Approach 422 6.7 422 6.7 0.839 44.1 LOS D 9.4 67.7 0.94 0.79 1.00 16.3 North: Lakeside Dr (N) 7 L2 All MCs 115 11.1 115 11.1 0.170 41.3 LOS D 4.3 33.2 0.69 0.74 0.69 19.9 8 T1 All MCs 1081 3.5 1081 3.5 *0.754 38.8 LOS D 28.1 204.4 0.93 0.83 0.93 18.8 Approach 1196 4.2 1196 4.2 0.754 39.0 LOS D 28.1 204.4 0.90 0.82 0.91 17.0 West: Racecourse Dr (W) West: Racecourse Dr (W) 10 L2 All MCs 895 2.1 895 2.1 0.836 8.3 LOS A 33.4 242.9 0.72 0.78 0.72 47.5 11 T1 All MCs 582 14.6 582 14.6 *0.836 27.7 LOS C 33.4 242.9 0.75 0.69 0.75 36.0 12 R2 All MCs 37 38.2 37 38.2 0.071 33.0 LOS C 1.4 13.2 0.69 0.70 0.69 29.3 Approach 1515 7.8 1515 7.8 0.836 16.4 LOS B 33.4 242.9 0.73 0.74 0.73 11.3 All Vehicles 3133 6.3 3133 6.3 0.839 28.7 LOS C 33.4 242.9 0.73 0.74 0.73 41.3 All Vehicles 3136 6.3 3133 6.3 0.839 28.7 LOS C 33.4 242.9 0.83 0.78 0.83 28.9 Site: 303 Racecourse Lakeside Lakeside Extended Design 203 All 24.3 0.41 0.68 0.41 45.4 2 T1 All MCs 372 3.3 372 3.3 0.299 11.1 LOS B 3.4 24.3 0.41 0.68 0.41 45.4 2 T1 All MCs 85 11.7 85 11.7 0.066 6.3 LOS E 1.0 6.0 6.1 0.1 0.15 0.75 0.76 0.77 22.9 East: Racecourse LE 1.7 85 11.7 0.066 6.3 LOS A 0.4 3.1 0.14 0.58 0.14 50.0 5 T1 All MCs 85 11.7 85 11.7 0.066 6.3 LOS C 14.3 112.3 0.83 0.72 0.75 0.75 0.79 5 T1 All MCs 85 11.7 85 11.7 0.066 6.3 LOS C 14.3 112.3 0.75 0.72 0.75 0.75 0.75 0.75 5 T1 All MCs 399 2.6 0.99 2.6 0.492 30.5	South	n: Lake	eside Dr (S)												
Approach	2	T1	All MCs	321	3.1	321	3.1	* 0.839	40.4	LOS D	9.4	67.7	0.94	0.79	1.01	19.8
North: Lakeside Dr (N) 7	3	R2	All MCs	102	18.1	102	18.1	0.618	55.7	LOS E	5.7	45.7	0.95	0.78	0.96	5.2
To L2 All MCs 115 11.1 115 11.1 0.170 41.3 LOS D 4.3 33.2 0.69 0.74 0.69 19.9	Appro	oach		422	6.7	422	6.7	0.839	44.1	LOS D	9.4	67.7	0.94	0.79	1.00	16.3
8	North	ı: Lake	side Dr (N	1)												
Approach	7	L2	All MCs	115	11.1	115	11.1	0.170	41.3	LOS D	4.3	33.2	0.69	0.74	0.69	19.9
West: Race-curse Dr (W) 10	8	T1	All MCs	1081	3.5	1081	3.5	* 0.754	38.8	LOS D	28.1	204.4	0.93	0.83	0.93	18.8
10	Appro	oach		1196	4.2	1196	4.2	0.754	39.0	LOS D	28.1	204.4	0.90	0.82	0.91	17.0
11 T1 All MCs 582 14.6 582 14.6 * 0.836 27.7 LOS C 33.4 242.9 0.75 0.69 0.75 35.0 12 R2 All MCs 37 38.2 37 38.2 0.071 33.0 LOS C 1.4 13.2 0.69 0.70 0.69 29.3 Approach 1515 7.8 1515 7.8 0.836 16.4 LOS B 33.4 242.9 0.73 0.74 0.73 41.3 All Vehicles 3133 6.3 3133 6.3 0.839 28.7 LOS C 33.4 242.9 0.83 0.78 0.83 28.9 Site: 303 [Racecourse_Lakeside_Lakeside_Extended_Design_2039_AM] South: Lakeside Dr Extended (S) 1 L2 All MCs 172 3.3 172 3.3 0.299 11.1 LOS B 3.4 24.3 0.41 0.68 0.41 45.4 2 T1 All MCs 187 410 4.8 0.634 38.7 LOS D 7.0 51.7 1.00 0.82 1.04 <td>West</td> <td>: Race</td> <td>course D</td> <td>r (W)</td> <td></td>	West	: Race	course D	r (W)												
12 R2 All MCs 37 38.2 37 38.2 0.071 33.0 LOS C 1.4 13.2 0.69 0.70 0.69 29.3 Approach 1515 7.8 1515 7.8 0.836 16.4 LOS B 33.4 242.9 0.73 0.74 0.73 41.3 All Vehicles 3133 6.3 3133 6.3 0.839 28.7 LOS C 33.4 242.9 0.83 0.78 0.83 28.9 Site: 303 [Racecourse_Lakeside_Lakeside_Extended_Design_2039_AM] South: Lakeside Dr Extended (S) 1 L2 All MCs 172 3.3 172 3.3 0.299 11.1 LOS B 3.4 24.3 0.41 0.68 0.41 45.4 2 T1 All MCs 172 3.3 172 3.3 0.299 11.1 LOS B 3.4 24.3 0.41 0.68 0.41 45.4 2 T1 All MCs 8.5 11.7 0.663 38.7 LOS D 7.0 51.7 0.75 0.76	10	L2	All MCs	895	2.1	895	2.1	0.836	8.3	LOSA	33.4	242.9	0.72	0.78	0.72	47.5
Approach	11	T1	All MCs	582	14.6	582	14.6	* 0.836	27.7	LOS C	33.4	242.9	0.75	0.69	0.75	35.0
All Vehicles 3133 6.3 3133 6.3 0.839 28.7 LOS C 33.4 242.9 0.83 0.78 0.83 28.9 Site: 303 [Racecourse_Lakeside_Lakeside Extended_Design_2039_AM] South: Lakeside Dr Extended (S) 1	12	R2	All MCs	373	38.2	37	38.2	0.071	33.0	LOS C	1.4	13.2	0.69	0.70	0.69	29.3
Site: 303 [Racecourse_Lakeside_Lakeside_Extended_Design_2039_AM] South: Lakeside Dr Extended (S) 1	Appro	oach		1515	7.8	1515	7.8	0.836	16.4	LOS B	33.4	242.9	0.73	0.74	0.73	41.3
South: Lakeside Dr Extended (S) 1	All Ve	ehicles		3133	6.3	3133	6.3	0.839	28.7	LOS C	33.4	242.9	0.83	0.78	0.83	28.9
1 L2 All MCs 172 3.3 172 3.3 0.299 11.1 LOS B 3.4 24.3 0.41 0.68 0.41 45.4 2 T1 All MCs 238 6.0 238 6.0 0.634 58.6 LOS E T7.0 51.7 1.00 0.82 1.04 10.1 Approach 410 4.8 410 4.8 0.634 38.7 LOS D 7.0 51.7 0.75 0.76 0.77 22.9 East: Racecourse Dr (E) 4 L2 All MCs 85 11.7 85 11.7 0.066 6.3 LOS A 0.4 3.1 0.14 0.58 0.14 50.0 5 T1 All MCs 630 13.9 630 13.9 0.492 32.2 LOS C 14.3 112.3 0.83 0.72 0.83 39.4 6 R2 All MCs 194 8.8 194 8.8 0.310 35.4 LOS D 8.2 61.4 0.77 0.78 0.77 28.1 Approach 909 12.6 909 12.6 0.492 30.5 LOS C 14.3 112.3 0.75 0.72 0.75 37.9 North: Lakeside Dr (N) 8 T1 All MCs 339 2.9 339 2.9 0.653 3.0 LOS A 5.1 36.7 0.20 0.31 0.20 33.2 9 R2 All MCs 783 5.1 783 5.1 0.653 9.0 LOS A 9.0 66.0 0.25 0.59 0.25 45.6 Approach 1122 4.4 1122 4.4 0.653 7.2 LOS A 9.0 66.0 0.23 0.50 0.23 44.5	Site:	303 [R	acecours	e_Lake	eside	_Lakes	ide E	xtended_l	Design_2	.039_AM]						
2 T1 All MCs 238 6.0 238 6.0 0.634 58.6 LOS E ¹¹ 7.0 51.7 1.00 0.82 1.04 10.1 Approach 410 4.8 410 4.8 0.634 38.7 LOS D 7.0 51.7 0.75 0.76 0.77 22.9 East: Racecourse Dr (E) 4 L2 All MCs 85 11.7 85 11.7 0.066 6.3 LOS A 0.4 3.1 0.14 0.58 0.14 50.0 5 T1 All MCs 630 13.9 630 13.9 0.492 32.2 LOS C 14.3 112.3 0.83 0.72 0.83 39.4 6 R2 All MCs 194 8.8 194 8.8 0.310 35.4 LOS D 8.2 61.4 0.77 0.78 0.77 28.1 Approach 909 12.6 909 12.6 0.492 30.5 LOS C 14.3 112.3 0.75 0.72 0.75 37.9 North: Lakeside Dr (N) 8 T1 All MCs 339 2.9 339 2.9 0.653 3.0 LOS A 5.1 36.7 0.20 0.31 0.20 33.2 9 R2 All MCs 783 5.1 783 5.1 0.653 9.0 LOS A 9.0 66.0 0.25 0.59 0.25 45.6 Approach 1122 4.4 1122 4.4 0.653 7.2 LOS A 9.0 66.0 0.23 0.50 0.23 44.5	South	n: Lake	eside Dr E	xtende	d (S)											
Approach 410 4.8 410 4.8 0.634 38.7 LOS D 7.0 51.7 0.75 0.76 0.77 22.9 East: Racecourse Dr (E) 4 L2 All MCs 85 11.7 85 11.7 0.066 6.3 LOS A	1	L2	All MCs	172	3.3	172	3.3	0.299	11.1	LOS B	3.4	24.3	0.41	0.68	0.41	45.4
East: Racecourse Dr (E) 4	2	T1	All MCs	238	6.0	238	6.0	0.634	58.6	LOS E ¹¹	7.0	51.7	1.00	0.82	1.04	10.1
4 L2 All MCs 85 11.7 85 11.7 0.066 6.3 LOS A 0.4 3.1 0.14 0.58 0.14 50.0 5 T1 All MCs 630 13.9 630 13.9 0.492 32.2 LOS C 14.3 112.3 0.83 0.72 0.83 39.4 6 R2 All MCs 194 8.8 194 8.8 0.310 35.4 LOS D 8.2 61.4 0.77 0.78 0.77 28.1 Approach 909 12.6 909 12.6 0.492 30.5 LOS C 14.3 112.3 0.75 0.72 0.75 37.9 North: Lakeside Dr (N) 8 T1 All MCs 339 2.9 339 2.9 0.653 3.0 LOS A 5.1 36.7 0.20 0.31 0.20 33.2 9 R2 All MCs 783 5.1 783 5.1 0.653 9.0 LOS A 9.0 66.0 0.25 0.59 0.25 45.6 Approach 1122 4.4 1122 4.4 0.653 7.2 LOS A 9.0 66.0 0.23 0.50 0.23 44.5	Appro	oach		410	4.8	410	4.8	0.634	38.7	LOS D	7.0	51.7	0.75	0.76	0.77	22.9
5 T1 All MCs 630 13.9 630 13.9 0.492 32.2 LOS C 14.3 112.3 0.83 0.72 0.83 39.4 6 R2 All MCs 194 8.8 194 8.8 0.310 35.4 LOS D 8.2 61.4 0.77 0.78 0.77 28.1 Approach 909 12.6 909 12.6 0.492 30.5 LOS C 14.3 112.3 0.75 0.72 0.75 37.9 North: Lakeside Dr (N) 8 T1 All MCs 339 2.9 339 2.9 0.653 3.0 LOS A 5.1 36.7 0.20 0.31 0.20 33.2 9 R2 All MCs 783 5.1 783 5.1 0.653 9.0 LOS A 9.0 66.0 0.25 0.59 0.25 45.6 Approach 1122 4.4 1122 4.4 0.653 7.2 LOS A 9.0 66.0 0.23 0.50 0.23 44.5	East:	Race	course Dr	(E)												
6 R2 All MCs 194 8.8 194 8.8 0.310 35.4 LOS D 8.2 61.4 0.77 0.78 0.77 28.1 Approach 909 12.6 909 12.6 0.492 30.5 LOS C 14.3 112.3 0.75 0.72 0.75 37.9 North: Lakeside Dr (N) 8 T1 All MCs 339 2.9 339 2.9 0.653 3.0 LOS A 5.1 36.7 0.20 0.31 0.20 33.2 9 R2 All MCs 783 5.1 783 5.1 0.653 9.0 LOS A 9.0 66.0 0.25 0.59 0.25 45.6 Approach 1122 4.4 1122 4.4 0.653 7.2 LOS A 9.0 66.0 0.23 0.50 0.23 44.5	4	L2	All MCs	85	11.7	85	11.7	0.066	6.3	LOSA	0.4	3.1	0.14	0.58	0.14	50.0
Approach 909 12.6 909 12.6 0.492 30.5 LOS C 14.3 112.3 0.75 0.72 0.75 37.9 North: Lakeside Dr (N) 8 T1 All MCs 339 2.9 339 2.9 0.653 3.0 LOS A 5.1 36.7 0.20 0.31 0.20 33.2 9 R2 All MCs 783 5.1 783 5.1 0.653 9.0 LOS A 9.0 66.0 0.25 0.59 0.25 45.6 Approach 1122 4.4 1122 4.4 0.653 7.2 LOS A 9.0 66.0 0.23 0.50 0.23 44.5	5	T1	All MCs	630	13.9	630	13.9	0.492	32.2	LOS C	14.3	112.3	0.83	0.72	0.83	39.4
North: Lakeside Dr (N) 8	6	R2	All MCs	194	8.8	194	8.8	0.310	35.4	LOS D	8.2	61.4	0.77	0.78	0.77	28.1
8 T1 All MCs 339 2.9 339 2.9 0.653 3.0 LOS A 5.1 36.7 0.20 0.31 0.20 33.2 9 R2 All MCs 783 5.1 783 5.1 0.653 9.0 LOS A 9.0 66.0 0.25 0.59 0.25 45.6 Approach 1122 4.4 1122 4.4 0.653 7.2 LOS A 9.0 66.0 0.23 0.50 0.23 44.5	Appro	oach		909	12.6	909	12.6	0.492	30.5	LOS C	14.3	112.3	0.75	0.72	0.75	37.9
9 R2 All MCs 783 5.1 783 5.1 0.653 9.0 LOS A 9.0 66.0 0.25 0.59 0.25 45.6 Approach 1122 4.4 1122 4.4 0.653 7.2 LOS A 9.0 66.0 0.23 0.50 0.23 44.5	North	: Lake	side Dr (N	۷)												
Approach 1122 4.4 1122 4.4 0.653 7.2 LOS A 9.0 66.0 0.23 0.50 0.23 44.5	8	T1	All MCs	339	2.9	339	2.9	0.653	3.0	LOSA	5.1	36.7	0.20	0.31	0.20	33.2
	9	R2	All MCs	783	5.1	783	5.1	0.653	9.0	LOSA	9.0	66.0	0.25	0.59	0.25	45.6
All Vehicles 2441 7.5 2441 7.5 0.653 21.1 LOS C 14.3 112.3 0.51 0.63 0.52 37.0	Appro	oach		1122	4.4	1122	4.4	0.653	7.2	LOSA	9.0	66.0	0.23	0.50	0.23	44.5
	All Ve	hicles		2441	7.5	2441	7.5	0.653	21.1	LOS C	14.3	112.3	0.51	0.63	0.52	37.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

- 11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.
- * Critical Movement (Signal Timing)

Pedestrian Mov	vement	Perforr	nance (C	CG)						
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	sec		ped	m -			sec	m	m/sec
Site: 202 [Raceco	ourse_La	keside_[Design_20	39_AM (WE	ST)]					
West: Racecourse	e Dr (W)									
P4 Full	28	54.2	LOS E	0.1	0.1	0.95	0.95	208.1	200.0	0.96
All Pedestrians	28	54.2	LOS E	0.1	0.1	0.95	0.95	208.1	200.0	0.96
Site: 303 [Raceco	ourse_La	keside_l	_akeside E	xtended_De	sign_2039_ <i>i</i>	AM]				
West: Racecourse	e Dr (W)									
P4 Full	28	54.2	LOS E	0.1	0.1	0.95	0.95	208.1	200.0	0.96
All Pedestrians	28	54.2	LOS E	0.1	0.1	0.95	0.95	208.1	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GELEON | Licence: NETWORK / 1PC | Processed: Tuesday, 3 September 2024 10:53:45 AM
Project: P:\50890 BNC (1-105 Racecourse Rd, Cluden)\02. D&D\05. SIDRA\Masterplan\Design 1_Bruce Hwy_Lakeside Dr_Townsville Turf
Club Access_Stuart Dr.sip9

Site: 303 [Precinct 1 & 2_Precinct 3_Design_2039_PM (Site

Folder: Final Design 1)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: N101 [Racecourse_Lakeside_Townsv ille Turf Club Access_Design_2039_PM (Network Folder: Design)]

2039 Design Traffic Volumes Site Category: Proposed Design 2

Roundabout

Design Life Analysis (Final Year): Results for 15 years

Vehi	Vehicle Movement Performance														
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of	95% Back	Of Queue		Eff.	Aver.	Aver.
ID		Class	اء ا Total]	lows HV 1		ows HV 1	Satn	Delay	Service	ſ Veh.	Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m			-,	km/h
South	n: Lake	side Dr E	xtende	d (S)											
1	L2	All MCs	27	0.0	27	0.0	0.237	6.0	LOS A	1.6	11.3	0.56	0.59	0.56	43.7
2	T1	All MCs	125	4.5	125	4.5	0.237	6.4	LOS A	1.6	11.3	0.56	0.59	0.56	36.1
3	R2	All MCs	89	0.0	89	0.0	0.237	10.4	LOS B	1.6	11.3	0.56	0.59	0.56	43.0
Appro	oach		242	2.3	242	2.3	0.237	7.9	LOSA	1.6	11.3	0.56	0.59	0.56	40.5
East:	Precir	nct 1 & 2 A	Access	(E)											
4	L2	All MCs	91	0.0	91	0.0	0.308	6.5	LOSA	2.1	15.2	0.61	0.64	0.61	38.4
5	T1	All MCs	1	0.0	1	0.0	0.308	6.8	LOSA	2.1	15.2	0.61	0.64	0.61	44.6
6	R2	All MCs	213	2.5	213	2.5	0.308	11.0	LOS B	2.1	15.2	0.61	0.64	0.61	38.4
Appro	oach		304	1.7	304	1.7	0.308	9.7	LOSA	2.1	15.2	0.61	0.64	0.61	38.4
North	: Lake	side Dr E	xtende	d (N)											
7	L2	All MCs	202	1.0	202	1.0	0.382	5.2	LOSA	2.9	20.7	0.44	0.51	0.44	45.3
8	T1	All MCs	210	4.7	210	4.7	0.382	5.6	LOS A	2.9	20.7	0.44	0.51	0.44	38.6
9	R2	All MCs	60	0.0	60	0.0	0.382	9.6	LOS A	2.9	20.7	0.44	0.51	0.44	44.7
Appro	oach		472	2.5	472	2.5	0.382	5.9	LOSA	2.9	20.7	0.44	0.51	0.44	43.2
West	: Preci	nct 3 Acce	ess (W)											
10	L2	All MCs	112	0.0	112	0.0	0.180	6.9	LOSA	1.1	7.9	0.62	0.65	0.62	39.7
11	T1	All MCs	1	0.0	1	0.0	0.180	7.3	LOS A	1.1	7.9	0.62	0.65	0.62	45.7
12	R2	All MCs	52	0.0	52	0.0	0.180	11.4	LOS B	1.1	7.9	0.62	0.65	0.62	39.7
Appro	oach		164	0.0	164	0.0	0.180	8.3	LOSA	1.1	7.9	0.62	0.65	0.62	39.8
All Ve	hicles		1182	1.9	1182	1.9	0.382	7.6	LOSA	2.9	20.7	0.54	0.58	0.54	41.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GELEON | Licence: NETWORK / 1PC | Processed: Friday, 9 August 2024 10:21:20 AM

Project: P:\50890 BNC (1-105 Racecourse Rd, Cluden)\02. D&D\05. SIDRA\Masterplan\Design 1_Bruce Hwy Lakeside Dr_Townsville Turf Club Access_Stuart Dr.sip9

Design 1)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■■ Network: N101 [Racecourse_Lakeside_Townsv ille Turf Club Access_Design_2039_PM (Network Folder: Design)]

2039 Design Traffic Volumes Site Category: Proposed Design 1

Roundabout

Design Life Analysis (Final Year): Results for 15 years

Vehicle Movement Performance															
Mov	Turn	Mov	Dem			rival	Deg.	Aver.		95% Back	Of Queue		Eff.	Aver.	Aver.
ID		Class	FI Total]	lows		OWS	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m m		Male	Cycles	km/h
South	: Stua	rt Dr (S)													
1	L2	All MCs	51	0.0	51	0.0	0.534	7.2	LOSA	4.2	30.5	0.67	0.61	0.67	54.3
2	T1	All MCs	1005	3.9	1005	3.9	0.534	9.5	LOSA	4.2	30.5	0.68	0.63	0.69	56.6
3	R2	All MCs	137	3.1	137	3.1	0.534	13.0	LOS B	4.2	30.4	0.70	0.66	0.72	51.0
3u	U	All MCs	2	0.0	2	0.0	0.534	15.2	LOS B	4.2	30.4	0.70	0.66	0.72	55.9
Appro	ach		1195	3.6	1195	3.6	0.534	9.8	LOS A	4.2	30.5	0.68	0.63	0.69	56.1
East:	Lakes	ide Dr Ex	tended	(E)											
4	L2	All MCs	200	2.8	200	2.8	0.601	13.5	LOS B	3.6	25.9	0.82	0.98	1.09	47.6
5	T1	All MCs	61	2.3	61	2.3	0.601	11.2	LOS B	3.6	25.9	0.82	0.98	1.09	45.5
6	R2	All MCs	90	1.6	90	1.6	0.601	15.8	LOS B	3.6	25.9	0.82	0.98	1.09	47.2
Appro	ach		351	2.4	351	2.4	0.601	13.7	LOS B	3.6	25.9	0.82	0.98	1.09	47.1
North	: Stua	rt Dr (N)													
7	L2	All MCs	63	0.0	63	0.0	0.505	6.3	LOS A	4.1	29.8	0.54	0.53	0.54	53.5
8	T1	All MCs	1017	4.0	1017	4.0	0.505	8.3	LOS A	4.1	29.8	0.55	0.55	0.55	57.2
9	R2	All MCs	191	0.6	191	0.6	0.505	11.5	LOS B	4.0	28.8	0.57	0.58	0.57	53.5
9u	U	All MCs	15	0.0	15	0.0	0.505	13.8	LOS B	4.0	28.8	0.57	0.58	0.57	56.4
Appro	ach		1285	3.3	1285	3.3	0.505	8.7	LOS A	4.1	29.8	0.55	0.55	0.55	56.5
West	Edisc	n St (W)													
10	L2	All MCs	112	6.5	112	6.5	0.379	12.6	LOS B	1.8	13.1	0.77	0.89	0.86	51.4
11	T1	All MCs	43	3.3	43	3.3	0.379	9.9	LOS A	1.8	13.1	0.77	0.89	0.86	45.1
12	R2	All MCs	24	0.0	24	0.0	0.379	14.3	LOS B	1.8	13.1	0.77	0.89	0.86	52.1
12u	U	All MCs	1	0.0	1	0.0	0.379	16.4	LOS B	1.8	13.1	0.77	0.89	0.86	49.7
Appro	ach		181	4.8	181	4.8	0.379	12.2	LOS B	1.8	13.1	0.77	0.89	0.86	50.5
All Ve	hicles		3012	3.4	3012	3.4	0.601	9.9	LOSA	4.2	30.5	0.65	0.65	0.69	55.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

CCG MOVEMENT SUMMARY

□□ Common Control Group: CCG1 [Racecourse Dr]
Output produced by SIDRA INTERSECTION Version: 9.1.6.228

EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (CCG User-Given Phase Times) Design Life Analysis (Final Year): Results for 15 years

Vehic	cle M	ovement	Perfo	rma	nce (C	CG)									
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]	FI		Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back ([Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
Site:	101 [R	acecours	e_Lake	eside_	_Desig	n_20	39_PM (W	EST)]							
South	: Lake	eside Dr (S)												
2	T1	All MCs	244	2.3	244	2.3	* 0.761	42.6	LOS D	7.1	50.7	0.91	0.74	0.96	19.1
3	R2	All MCs	84	16.8	84	16.8	0.610	58.9	LOS E	4.8	38.5	0.96	0.77	0.97	5.0
Appro	ach		328	6.0	328	6.0	0.761	46.8	LOS D	7.1	50.7	0.92	0.75	0.96	15.4
North	: Lake	side Dr (N	1)												
7	L2	All MCs	276	4.6	276	4.6	0.297	30.8	LOS C	9.1	66.2	0.61	0.75	0.61	24.0
8	T1	All MCs	1368	1.6	1368	1.6	* 0.745	27.7	LOS C	33.7	239.8	0.85	0.77	0.85	23.3
Appro	ach		1644	2.1	1644	2.1	0.745	28.3	LOS C	33.7	239.8	0.81	0.77	0.81	21.2
West:	Race	course Di	(W)												
10	L2	All MCs	595	1.0	595	1.0	0.624	6.0	LOSA	11.0	78.9	0.50	0.67	0.50	48.7
11	T1	All MCs	458	9.3	458	9.3	0.624	31.0	LOS C	11.9	89.8	0.74	0.71	0.74	31.6
12	R2	All MCs	31	41.6	31	41.6	0.083	42.4	LOS D	1.4	12.9	0.79	0.71	0.79	25.5
Appro	ach		1083	5.6	1083	5.6	0.624	17.6	LOS B	11.9	89.8	0.61	0.69	0.61	40.5
All Ve	hicles		3056	3.8	3056	3.8	0.761	26.5	LOS C	33.7	239.8	0.75	0.74	0.75	28.2
Site:	101 [R	acecours	e_Lake	eside_	_Lakes	ide E	xtended_[Design_2	039_PM]						
South	ı: Lake	eside Dr E	xtende	d (S))										
1	L2	All MCs	289	2.4	289	2.4	0.784	39.4	LOS D	17.6	126.0	1.00	1.01	1.12	30.2
2	T1	All MCs	159	3.6	159	3.6	0.502	59.3	LOS E	4.7	33.7	1.00	0.77	1.00	10.0
Appro	ach		449	2.8	449	2.8	0.784	46.5	LOS D	17.6	126.0	1.00	0.92	1.08	23.7
East:	Raced	course Dr	(E)												
4	L2	All MCs	115	6.2	115	6.2	0.093	6.5	LOSA	0.6	4.1	0.14	0.59	0.14	50.0
5	T1	All MCs	846	7.4	846	7.4	* 0.881	56.5	LOS E	27.1	201.7	1.00	1.04	1.19	31.3
6	R2	All MCs	139	5.1	139	5.1	0.300	44.2	LOS D	6.6	47.9	0.85	0.78	0.85	24.8
Appro	ach		1100	7.0	1100	7.0	0.881	49.7	LOS D	27.1	201.7	0.89	0.96	1.04	31.4
North	: Lake	side Dr (N	1)												
8	T1	All MCs	359	2.4	359	2.4	0.667	2.8	LOSA	7.7	55.1	0.22	0.40	0.22	31.3
9	R2	All MCs	1046	1.9	1046	1.9	0.667	7.7	LOS A	8.6	61.3	0.22	0.57	0.22	47.3
Appro	ach		1405	2.0	1405	2.0	0.667	6.4	LOSA	8.6	61.3	0.22	0.53	0.22	46.1
All Ve	hicles		2953	4.0	2953	4.0	0.881	28.6	LOS C	27.1	201.7	0.59	0.75	0.65	33.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mov	vement	Perforr	nance (C	CG)									
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed			
	ped/h	sec		ped	m			sec	m	m/sec			
Site: 101 [Racecourse_Lakeside_Design_2039_PM (WEST)]													
West: Racecours	e Dr (W)												
P4 Full	28	54.2	LOS E	0.1	0.1	0.95	0.95	208.1	200.0	0.96			
All Pedestrians	28	54.2	LOS E	0.1	0.1	0.95	0.95	208.1	200.0	0.96			
Site: 101 [Raceco	ourse_La	keside_l	_akeside E	xtended_De	sign_2039_I	PM]							
West: Racecours	e Dr (W)												
P4 Full	28	54.2	LOS E	0.1	0.1	0.95	0.95	208.1	200.0	0.96			
All Pedestrians	28	54.2	LOS E	0.1	0.1	0.95	0.95	208.1	200.0	0.96			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GELEON | Licence: NETWORK / 1PC | Processed: Friday, 9 August 2024 10:21:20 AM
Project: P:\50890 BNC (1-105 Racecourse Rd, Cluden)\02. D&D\05. SIDRA\Masterplan\Design 1_Bruce Hwy_Lakeside Dr_Townsville Turf
Club Access_Stuart Dr.sip9

Site: 303 [Precinct 1 & 2_Precinct 3_Design_2039_Weekend

(Site Folder: Final Design 1)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: N101 [Racecourse_Lakeside_Townsv ille Turf Club Access_Design_2039_Weekend (Network Folder: Design)]

2039 Design Traffic Volumes Site Category: Proposed Design 2

Roundabout

Design Life Analysis (Final Year): Results for 15 years

Vehi	Vehicle Movement Performance														
Mov	Turn	Mov	Dem			rival	Deg.		Level of	95% Back	Of Queue		Eff.	Aver.	Aver.
ID		Class		lows HV/1	ا-ا ا Total]	ows HV 1	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m m		rtato	O y oloo	km/h
South	n: Lake	eside Dr E	xtende	d (S)											
1	L2	All MCs	42	0.0	42	0.0	0.261	6.5	LOSA	1.7	12.4	0.62	0.62	0.62	43.2
2	T1	All MCs	112	3.8	112	3.8	0.261	7.0	LOSA	1.7	12.4	0.62	0.62	0.62	35.4
3	R2	All MCs	95	0.0	95	0.0	0.261	11.0	LOS B	1.7	12.4	0.62	0.62	0.62	42.5
Appro	oach		249	1.7	249	1.7	0.261	8.4	LOSA	1.7	12.4	0.62	0.62	0.62	40.4
East:	Precir	nct 1 & 2 A	Access	(E)											
4	L2	All MCs	95	0.0	95	0.0	0.341	6.4	LOSA	2.4	17.0	0.62	0.64	0.62	38.3
5	T1	All MCs	1	0.0	1	0.0	0.341	6.8	LOSA	2.4	17.0	0.62	0.64	0.62	44.6
6	R2	All MCs	244	0.9	244	0.9	0.341	10.9	LOS B	2.4	17.0	0.62	0.64	0.62	38.3
Appro	oach		340	0.6	340	0.6	0.341	9.7	LOSA	2.4	17.0	0.62	0.64	0.62	38.4
North	: Lake	side Dr E	xtende	d (N)											
7	L2	All MCs	240	0.0	240	0.0	0.406	5.0	LOSA	3.3	23.4	0.45	0.51	0.45	45.2
8	T1	All MCs	176	8.0	176	8.0	0.406	5.4	LOSA	3.3	23.4	0.45	0.51	0.45	38.2
9	R2	All MCs	103	0.0	103	0.0	0.406	9.5	LOSA	3.3	23.4	0.45	0.51	0.45	44.4
Appro	oach		519	0.3	519	0.3	0.406	6.1	LOSA	3.3	23.4	0.45	0.51	0.45	43.5
West	: Preci	nct 3 Acce	ess (W)											
10	L2	All MCs	80	0.0	80	0.0	0.128	7.0	LOSA	8.0	5.4	0.62	0.65	0.62	39.8
11	T1	All MCs	1	0.0	1	0.0	0.128	7.3	LOSA	0.8	5.4	0.62	0.65	0.62	45.8
12	R2	All MCs	33	0.0	33	0.0	0.128	11.4	LOS B	8.0	5.4	0.62	0.65	0.62	39.8
Appro	oach		114	0.0	114	0.0	0.128	8.2	LOSA	8.0	5.4	0.62	0.65	0.62	39.9
All Ve	hicles		1221	0.6	1221	0.6	0.406	7.8	LOSA	3.3	23.4	0.55	0.58	0.55	41.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GELEON | Licence: NETWORK / 1PC | Processed: Friday, 9 August 2024 10:21:53 AM

Project: P:\50890 BNC (1-105 Racecourse Rd, Cluden)\02. D&D\05. SIDRA\Masterplan\Design 1_Bruce Hwy Lakeside Dr_Townsville Turf Club Access_Stuart Dr.sip9

Folder: Final Design 1)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■■ Network: N101 [Racecourse_Lakeside_Townsv ille Turf Club Access_Design_2039_Weekend (Network Folder: Design)]

2039 Design Traffic Volumes Site Category: Proposed Design 1

Roundabout

Design Life Analysis (Final Year): Results for 15 years

Vehicle Movement Performance															
Mov ID	Turn	Mov	Dem			rival	Deg.	Aver.	Level of	95% Back	Of Queue		Eff.	Aver.	Aver.
שו		Class		ows HV 1	اء Total]	lows HV 1	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m ¹			- ,	km/h
South	: Stua	rt Dr (S)													
1	L2	All MCs	28	8.7	28	8.7	0.372	6.4	LOSA	2.6	18.6	0.49	0.52	0.49	54.8
2	T1	All MCs	759	4.5	759	4.5	0.372	7.6	LOS A	2.6	18.6	0.49	0.54	0.49	57.4
3	R2	All MCs	133		133	2.1	0.372	11.4	LOS B	2.5	18.0	0.51	0.58	0.51	52.4
3u	U	All MCs	2	0.0	2	0.0	0.372	13.7	LOS B	2.5	18.0	0.51	0.58	0.51	56.8
Appro	ach		922	4.3	922	4.3	0.372	8.1	LOS A	2.6	18.6	0.49	0.55	0.49	56.8
East:	Lakes	ide Dr Ex	tended	(E)											
4	L2	All MCs	183	0.8	183	8.0	0.430	9.9	LOSA	2.2	15.5	0.71	0.85	0.81	50.7
5	T1	All MCs	37	0.0	37	0.0	0.430	8.4	LOSA	2.2	15.5	0.71	0.85	0.81	47.9
6	R2	All MCs	79	0.0	79	0.0	0.430	13.1	LOS B	2.2	15.5	0.71	0.85	0.81	50.2
Appro	ach		300	0.5	300	0.5	0.430	10.6	LOS B	2.2	15.5	0.71	0.85	0.81	50.2
North	Stua	rt Dr (N)													
7	L2	All MCs	74	0.0	74	0.0	0.406	6.1	LOSA	2.9	20.8	0.46	0.51	0.46	54.3
8	T1	All MCs	864	2.8	864	2.8	0.406	7.4	LOSA	2.9	20.8	0.47	0.53	0.47	58.0
9	R2	All MCs	110	2.2	110	2.2	0.406	11.3	LOS B	2.8	20.3	0.48	0.55	0.48	54.1
9u	U	All MCs	3	0.0	3	0.0	0.406	13.5	LOS B	2.8	20.3	0.48	0.55	0.48	57.1
Appro	ach		1052	2.6	1052	2.6	0.406	7.8	LOSA	2.9	20.8	0.47	0.53	0.47	57.4
West:	Ediso	n St (W)													
10	L2	All MCs	152	0.8	152	8.0	0.344	9.6	LOSA	1.6	11.1	0.69	0.81	0.73	53.9
11	T1	All MCs	38	3.7	38	3.7	0.344	8.6	LOSA	1.6	11.1	0.69	0.81	0.73	47.0
12	R2	All MCs	20	12.5	20	12.5	0.344	13.8	LOS B	1.6	11.1	0.69	0.81	0.73	50.7
12u	U	All MCs	1	0.0	1	0.0	0.344	15.1	LOS B	1.6	11.1	0.69	0.81	0.73	50.9
Appro	ach		211	2.4	211	2.4	0.344	9.8	LOSA	1.6	11.1	0.69	0.81	0.73	52.7
All Ve	hicles		2484	2.9	2484	2.9	0.430	8.4	LOSA	2.9	20.8	0.53	0.60	0.54	56.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

CCG MOVEMENT SUMMARY

□□ Common Control Group: CCG1 [Racecourse Dr]
Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101

[Racecourse_Lakeside_Townsv
ille Turf Club

Access_Design_2039_Weekend
(Network Folder: Design)]

EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (CCG User-Given Phase Times) Design Life Analysis (Final Year): Results for 15 years

Vehi	cle M	ovement	Perfo	rma	nce (C	CG)									
Mov ID	Turn	Mov Class		lows HV]			Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Back ([Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
Site:	101 [R	acecours					39_Weeke		ST)]						
South	n: Lake	eside Dr (3)												
2	T1	All MCs	363	1.6	363	1.6	* 0.752	29.3	LOS C	9.3	66.2	0.80	0.67	0.83	24.3
3	R2	All MCs	105	6.7	105	6.7	0.474	47.1	LOS D	5.1	37.9	0.85	0.76	0.85	6.1
Appr	oach		468	2.7	468	2.7	0.752	33.3	LOS C	9.3	66.2	0.81	0.69	0.83	20.0
North	ı: Lake	side Dr (N	1)												
7	L2	All MCs	272	5.2	272	5.2	0.280	28.4	LOS C	8.5	61.9	0.58	0.74	0.58	25.1
8	T1	All MCs	1429	0.5	1429	0.5	* 0.735	25.5	LOS C	34.0	239.1	0.82	0.75	0.82	24.6
Appr	oach		1701	1.2	1701	1.2	0.735	26.0	LOS C	34.0	239.1	0.78	0.75	0.78	22.3
West	: Race	course Di	(W)												
10	L2	All MCs	473	1.8	473	1.8	0.681	6.5	LOSA	16.2	116.2	0.69	0.74	0.69	44.7
11	T1	All MCs	536	4.5	536	4.5	* 0.681	43.0	LOS D	16.2	116.2	0.87	0.78	0.88	27.6
12	R2	All MCs	4	0.0	4	0.0	0.011	48.2	LOS D	0.2	1.3	0.84	0.64	0.84	23.5
Appr	oach		1013	3.2	1013	3.2	0.681	25.9	LOS C	16.2	116.2	0.78	0.76	0.79	35.1
All Ve	ehicles		3181	2.1	3181	2.1	0.752	27.0	LOS C	34.0	239.1	0.79	0.74	0.79	27.3
Site:	101 [R	acecours	e_Lake	eside	_Lakes	ide E	xtended_[Design_2	.039_Wee	kend]					
Sout	n: Lake	side Dr E	xtende	d (S)											
1	L2	All MCs	196	1.4	196	1.4	0.390	12.2	LOS B	4.9	34.4	0.50	0.72	0.50	44.6
2	T1	All MCs	243		243		0.504	54.3	LOS D	6.8	48.5	0.98	0.78	0.98	10.7
Appr	oach		439	1.6	439	1.6	0.504	35.5	LOS D	6.8	48.5	0.76	0.75	0.76	24.6
East	Raced	course Dr	(E)												
4	L2	All MCs	96	1.5	96	1.5	0.078	6.2	LOSA	0.5	3.3	0.14	0.59	0.14	50.0
5	T1	All MCs	581	2.9	581	2.9	0.828	56.9	LOS E ¹¹	17.8	127.9	1.00	0.96	1.15	31.2
6	R2	All MCs	188	5.3	188	5.3	0.574	54.7	LOS D	10.3	75.1	0.96	0.82	0.96	21.7
Appr	oach		865	3.3	865	3.3	0.828	50.8	LOS D	17.8	127.9	0.90	0.89	1.00	30.2
North	North: Lakeside Dr (N)														
8	T1	All MCs	424	0.3	424	0.3	0.610	1.7	LOSA	4.5	31.7	0.13	0.29	0.13	37.6
9	R2	All MCs	1002	0.7	1002	0.7	0.610	6.6	LOS A	5.8	40.8	0.14	0.54	0.14	48.3
Appr	oach		1426	0.6	1426	0.6	0.610	5.2	LOSA	5.8	40.8	0.14	0.47	0.14	47.5
All Ve	ehicles		2730	1.6	2730	1.6	0.828	24.5	LOS C	17.8	127.9	0.48	0.65	0.51	34.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

- 11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.
- * Critical Movement (Signal Timing)

Pedestrian Mov	vement	Perforr	nance (C	CG)						
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	sec		ped	m -			sec	m	m/sec
Site: 101 [Raceco	ourse_La	keside_[Design_20	39_Weeken	d (WEST)]					
West: Racecours	e Dr (W)									
P4 Full	7	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96
All Pedestrians	7	54.2	LOS E	0.0	0.0	0.95	0.95	208.0	200.0	0.96
Site: 101 [Raceco	Site: 101 [Racecourse_Lakeside_Lakeside Extended_Design_2039_Weekend]									
West: Racecours	e Dr (W)									
P4 Full	71	54.3	LOS E	0.2	0.2	0.95	0.95	208.2	200.0	0.96
All Pedestrians	71	54.3	LOS E	0.2	0.2	0.95	0.95	208.2	200.0	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GELEON | Licence: NETWORK / 1PC | Processed: Friday, 9 August 2024 10:21:53 AM
Project: P:\50890 BNC (1-105 Racecourse Rd, Cluden)\02. D&D\05. SIDRA\Masterplan\Design 1_Bruce Hwy_Lakeside Dr_Townsville Turf
Club Access_Stuart Dr.sip9

Townsville Water Park, Beach Club and Hotel 1-105 Racecourse Road, Cluden

Appendix H Development code responses

Document Set IDR264t 85660-RP02-A Version: 1, Version Date: 24/10/2024

State code 1: Development in a state-controlled road environment

Table 1.2 Vehicular access, road layout and local roads

Performance outcomes	Acceptable outcomes	Response
Vehicular access to a state-controlled road or w	rithin 100 metres of a state-controlled road i	intersection
PO15 The location, design and operation of a new or changed access to a state-controlled road does not compromise the safety of users of the state-controlled road.	No acceptable outcome is prescribed.	No access is proposed to a state-controlled road. As part of the proposed transport infrastructure upgrades a new four-leg single lane roundabout will be provided at the midpoint between Racecourse Road and Stuart Drive. Direct property access to the new Lakeside Drive extended will not be permitted with all development traffic to flow through the eastbound and westbound approaches to this roundabout.
PO16 The location, design and operation of a new or changed access does not adversely impact the functional requirements of the state-controlled road.	No acceptable outcome is prescribed.	As part of the proposed transport infrastructure upgrades a new four-leg single lane roundabout will be provided at the midpoint between Racecourse Road and Stuart Drive. Direct property access to the new Lakeside Drive extended will not be permitted with all development traffic to flow through the eastbound and westbound approaches to this roundabout.
PO17 The location, design and operation of a new or changed access is consistent with the future intent of the state-controlled road.	No acceptable outcome is prescribed.	Not applicable. No access is proposed to a state-controlled road.
PO18 New or changed access is consistent with the access for the relevant limited access road policy: 1. LAR 1 where direct access is prohibited; or	No acceptable outcome is prescribed.	Not applicable.

State Development Assessment Provisions v3.0

Performance outcomes	Acceptable outcomes	Response
2. LAR 2 where access may be permitted,		
subject to assessment. PO19 New or changed access to a local road within 100 metres of an intersection with a state-controlled road does not compromise the safety of users of the state-controlled road.	No acceptable outcome is prescribed.	As part of the proposed transport infrastructure upgrades a new four-leg single lane roundabout will be provided at the midpoint between Racecourse Road and Stuart Drive. Direct property access to the new Lakeside Drive extended will not be permitted with all development traffic to flow through the eastbound and westbound approaches to this roundabout. Refer to Geleon Traffic Impact Report 50890-
PO20 New or changed access to a local road within 100 metres of an intersection with a state-controlled road does not adversely impact on the operating performance of the intersection.	No acceptable outcome is prescribed.	RP02-A which presents the findings of a Traffic Impact Assessment on the external road network As part of the proposed transport infrastructure upgrades a new four-leg single lane roundabout will be provided at the midpoint between Racecourse Road and Stuart Drive. Direct property access to the new Lakeside Drive extended will not be permitted with all development traffic to flow through the eastbound and westbound approaches to this roundabout. Refer to Geleon Traffic Impact Report 50890-RP02-A which presents the findings of a Traffic
		Impact Assessment on the external road network
Public passenger transport and active transport		COMPLIES WITH PO21.
PO21 Development does not compromise the safety of users of public passenger transport infrastructure, public passenger services and active transport infrastructure.	No acceptable outcome is prescribed.	The normal operation of public passenger transport infrastructure or public passenger services will not be interrupted during construction of the development.
PO22 Development maintains the ability for people to access public passenger transport infrastructure, public passenger services and active transport infrastructure.	No acceptable outcome is prescribed.	COMPLIES WITH PO22. The normal operation of public passenger transport infrastructure or public passenger services will not be interrupted during construction of the development.

Performance outcomes	Acceptable outcomes	Response
PO23 Development does not adversely impact the operating performance of public passenger transport infrastructure, public passenger services and active transport infrastructure.	No acceptable outcome is prescribed.	COMPLIES WITH PO23. The normal operation of public passenger transport infrastructure or public passenger services will not be interrupted during construction of the development.
PO24 Development does not adversely impact the structural integrity or physical condition of public passenger transport infrastructure and active transport infrastructure.	No acceptable outcome is prescribed.	COMPLIES WITH PO24. The normal operation of public passenger transport infrastructure or public passenger services will not be interrupted during construction of the development.

Table 1.3 Network impacts

Performance outcomes	Acceptable outcomes	Response
PO25 Development does not compromise the	No acceptable outcome is prescribed.	COMPLIES WITH PO25.
safety of users of the state-controlled road network.		The anticipated peak hour traffic generated by the development is 660 trips in the AM peak hour, 780 trips in the PM peak hour, 862 trips in the weekend peak and 7,351 daily trips.
		Refer to Geleon Traffic Impact Assessment Report 50890-RP02-A which presents the findings of a Traffic Impact Assessment on the external road network.
PO26 Development ensures no net worsening of	No acceptable outcome is prescribed.	COMPLIES WITH PO26.
the operating performance of the state-controlled road network.		The anticipated peak hour traffic generated by the development is 660 trips in the AM peak hour, 780 trips in the PM peak hour, 862 trips in the weekend peak and 7,351 daily trips.
		Refer to Geleon Traffic Impact Assessment Report 50890-RP02-A which presents the findings of a Traffic Impact Assessment on the external road network.
PO27 Traffic movements are not directed onto a	No acceptable outcome is prescribed.	COMPLIES WITH PO27.
state-controlled road where they can be accommodated on the local road network.		Given the geographical location of the development, most traffic entering and exiting the

State Development Assessment Provisions v3.0

Performance outcomes	Acceptable outcomes	Response
		development will travel through the Racecourse Road / Lakeside Drive intersections. An assessment of aggregate-intersection-delay impact 'with development' and road safety assessment has been undertaken which confirmed the following mitigation measures are required:
		 apply a common control group (CCG) phasing sequence to the existing Racecourse Road eastbound / Lakeside Drive and Racecourse Road westbound / Lakeside Drive / Townsville Turf Club Access signalised intersections and modify the phasing sequence and timing to cater for existing and development generated traffic, as well as a new road connection to Stuart Drive
		 provide a new road connection between Racecourse Road and Stuart Drive connecting to the Stuart Drive / Edison Street roundabout in the south and Racecourse Road / Lakeside Drive signalised intersection in the north. The road connection will be to a two-lane, two-way road configuration in accordance with Council Standard Drawing SD-002 - Typical Cross Sections, Major Collector Roads and direct property access will be prohibited
		 provide a new four-leg single lane roundabout at the midpoint between Racecourse Road and Stuart Drive. The eastbound and westbound approaches to this roundabout will facilitate access to the proposed development, and
		 upgrade the existing Stuart Drive / Edison Street three-leg roundabout to a four-leg double lane roundabout in the north-south

Performance outcomes	Acceptable outcomes	Response
		direction. A four-lane, two-way carriageway on both Stuart Drive approaches will be required for 130m on the approach and 170m on the departure side of the roundabout.
		SIDRA analysis for the proposed infrastructure upgrades confirm that the development's impact has been mitigated to an acceptable level consistent with TMR's GTIA.
		Refer to Geleon Traffic Impact Assessment Report 50890-RP02-A which presents the findings of a Traffic Impact Assessment and a Road Safety Assessment on the external road network.
PO28 Development involving haulage exceeding 10,000 tonnes per year does not adversely impact the pavement of a state-controlled road.	No acceptable outcome is prescribed.	Not applicable.
PO29 Development does not impede delivery of planned upgrades of state-controlled roads.	No acceptable outcome is prescribed.	Not applicable.
PO30 Development does not impede delivery of corridor improvements located entirely within the state-controlled road corridor.	No acceptable outcome is prescribed.	Not applicable.

State code 6: Protection of state transport networks

Table 6.2 Development in general

Performance outcomes	Acceptable outcomes	Response
Network impacts	·	·
PO1 Development does not compromise the safety of users of the state-controlled road	No acceptable outcome is prescribed.	COMPLIES WITH PO1
network.		No access is proposed to a state-controlled road. As part of the proposed transport infrastructure upgrades a new four-leg single lane roundabout will be provided at the midpoint between Racecourse Road and Stuart Drive. Direct property access to the new Lakeside Drive extended will not be permitted with all development traffic to flow through the eastbound and westbound approaches to this roundabout. Refer to Geleon Traffic Impact Assessment Report 50890-RP02-A which presents the findings of a traffic impact assessment on the external road network.
PO2 Development does not adversely impact	No acceptable outcome is prescribed.	COMPLIES WITH PO2.
the structural integrity or physical condition of a state-controlled road or road transport infrastructure.		The development does not result in a worsening of the infrastructure condition of the state-controlled road as a result of implementing the proposed infrastructure upgrades. For further details in relation to the proposed development details, refer plans of development and Geleon Traffic Impact Assessment Report 50890-RP02-A.
PO3 Development ensures no net worsening of	No acceptable outcome is prescribed.	COMPLIES WITH PO3.
the operating performance the state-controlled road network.		The development does not result in a worsening of the infrastructure condition of the state-controlled road as a result of implementing the proposed infrastructure upgrades. For further details in relation to the proposed development details, refer plans of development and Geleon Traffic Impact Assessment Report 50890-RP02-A.

State Development Assessment Provisions v3.0

Performance outcomes	Acceptable outcomes	Response
PO4 Traffic movements are not directed onto a state-controlled road where they can be accommodated on the local road network.	No acceptable outcome is prescribed.	Given the geographical location of the development, most traffic entering and exiting the development will travel through the Racecourse Road / Lakeside Drive intersections. An assessment of aggregate-intersection-delay impact 'with development' and road safety assessment has been undertaken which confirmed the following mitigation measures are required:
		 apply a common control group (CCG) phasing sequence to the existing Racecourse Road eastbound / Lakeside Drive and Racecourse Road westbound / Lakeside Drive / Townsville Turf Club Access signalised intersections and modify the phasing sequence and timing to cater for existing and development generated traffic, as well as a new road connection to Stuart Drive
		 provide a new road connection between Racecourse Road and Stuart Drive connecting to the Stuart Drive / Edison Street roundabout in the south and Racecourse Road / Lakeside Drive signalised intersection in the north. The road connection will be to a two-lane, two-way road configuration in accordance with Council Standard Drawing SD-002 – Typical Cross Sections, Major Collector Roads and direct property access will be prohibited
		 provide a new four-leg single lane roundabout at the midpoint between Racecourse Road and Stuart Drive. The eastbound and westbound approaches to this roundabout will facilitate access to the proposed development, and
		 upgrade the existing Stuart Drive / Edison Street three-leg roundabout to a four-leg

Performance outcomes	Acceptable outcomes	Response
		double lane roundabout in the north-south direction. A four-lane, two-way carriageway on both Stuart Drive approaches will be required for 130m on the approach and 170m on the departure side of the roundabout.
		SIDRA analysis for the proposed infrastructure upgrades confirm that the development's impact has been mitigated to an acceptable level consistent with TMR's GTIA.
		Refer to Geleon Traffic Impact Assessment Report 50890-RP02-A which presents the findings of a Traffic Impact Assessment and a Road Safety Assessment on the external road network.
PO5 Development involving haulage exceeding 10,000 tonnes per year does not damage the pavement of a state-controlled road .	No acceptable outcome is prescribed.	Not applicable.
PO6 Development does not require a new railway level crossing.	No acceptable outcome is prescribed.	Not applicable.
PO7 Development does not adversely impact the operating performance of an existing railway crossing.	No acceptable outcome is prescribed.	Not applicable.
PO8 Development does not adversely impact on the safety of an existing railway crossing.	No acceptable outcome is prescribed.	Not applicable.
PO9 Development is designed and constructed to allow for on-site circulation to ensure vehicles do not queue in a railway crossing .	No acceptable outcome is prescribed.	Not applicable.
PO10 Development does not create a safety hazard within the railway corridor.	No acceptable outcome is prescribed.	Not applicable.
PO11 Development does not adversely impact the operating performance of the railway corridor.	No acceptable outcome is prescribed.	Not applicable.
PO12 Development does not interfere with or obstruct the railway transport infrastructure or other rail infrastructure.	No acceptable outcome is prescribed.	Not applicable.
PO13 Development does not adversely impact the structural integrity or physical condition of a	No acceptable outcome is prescribed.	Not applicable.

Performance outcomes	Acceptable outcomes	Response			
railway corridor or rail transport					
infrastructure.					
Planned upgrades					
PO21 Development does not impede delivery of	No acceptable outcome is prescribed.	COMPLIES WITH PO21.			
planned upgrades of state transport		The proposed development does not impede			
infrastructure.		delivery of planned upgrades of state transport			
		infrastructure.			

Table 6.3 Public passenger transport infrastructure and active transport

Performance outcomes	Acceptable outcomes	Response
PO22 Development does not damage or interfere with public passenger transport infrastructure, active transport infrastructure or public passenger services.	No acceptable outcome is prescribed.	COMPLIES WITH PO22. The proposed development does not impact existing public passenger transport infrastructure.
PO23 Development does not compromise the safety of public passenger transport infrastructure, public passenger services and active transport infrastructure.	No acceptable outcome is prescribed.	COMPLIES WITH PO23. The proposed development does not compromise the safety of public passenger transport infrastructure, public passenger services and active transport infrastructure.
PO24 Development does not adversely impact the operating performance of public passenger transport infrastructure, public passenger services and active transport infrastructure.	No acceptable outcome is prescribed.	COMPLIES WITH PO24. The normal operation of public passenger transport infrastructure or public passenger services will not be interrupted during construction of the development.
PO25 Development does not adversely impact the structural integrity or physical condition of public passenger transport infrastructure and active transport infrastructure.	No acceptable outcome is prescribed.	COMPLIES WITH PO25. The proposed development does not adversely impact the structural integrity or physical condition of public passenger transport infrastructure and active transport infrastructure.
PO26 Upgraded or new public passenger transport infrastructure and active transport infrastructure is provided to accommodate the demand for public passenger transport and active transport generated by the development.	No acceptable outcome is prescribed.	Not applicable.

State Development Assessment Provisions v3.0

Performance outcomes	Acceptable outcomes	Response
PO27 Development is designed to ensure the location of public passenger transport infrastructure prioritises and enables efficient public passenger services.	No acceptable outcome is prescribed.	Not applicable.
PO28 Development enables the provision or extension of public passenger services, public passenger transport infrastructure and active transport infrastructure to the development and avoids creating indirect or inefficient routes for public passenger services.	No acceptable outcome is prescribed.	Not applicable.
PO29 New or modified road networks are designed to enable development to be serviced by public passenger services.	 AO29.1 Roads catering for buses are arterial or sub-arterial roads, collector or their equivalent. AND AO29.2 Roads intended to accommodate buses are designed and constructed in accordance with: Road Planning and Design Manual, 2nd Edition, Volume 3 – Guide to Road Design; Department of Transport and Main Roads; Supplement to Austroads Guide to Road Design (Parts 3, 4-4C and 6), Department of Transport and Main Roads; Austroads Guide to Road Design (Parts 3, 4-4C and 6); Austroads Design Vehicles and Turning Path Templates; Queensland Manual of Uniform Traffic Control Devices, Part 13: Local Area Traffic Management and AS 1742.13-2009 Manual of Uniform Traffic Control Devices – Local Area Traffic Management; AND AO29.3 Traffic calming devices are not installed on roads used for buses in accordance with section 2.3.2 Bus Route Infrastructure, Public 	Not applicable.

Performance outcomes	Acceptable outcomes	Response
	Transport Infrastructure Manual, Department of Transport and Main Roads, 2015.	
PO30 Development provides safe, direct and convenient access to existing and future public passenger transport infrastructure and active transport infrastructure.	No acceptable outcome is prescribed.	COMPLIES WITH PO30. The development will provide connections to existing footpaths. Refer to plans of development.
PO31 On-site vehicular circulation ensures the safety of both public passenger transport services and pedestrians.	No acceptable outcome is prescribed.	Not applicable.
PO32 Taxi facilities are provided to accommodate the demand generated by the development.	No acceptable outcome is prescribed.	Not applicable.
PO33 Facilities are provided to accommodate the demand generated by the development for community transport services, courtesy transport services, and booked hire services other than taxis.	No acceptable outcome is prescribed.	Not applicable.
PO34 Taxi facilities are located and designed to provide convenient, safe and equitable access for passengers.	AO34.1 A taxi facility is provided parallel to the kerb and adjacent to the main entrance. AND	Not applicable.
	 AO34.2 Taxi facilities are designed in accordance with: 1. AS2890.5–1993 Parking facilities – on-street parking and AS1428.1–2009 Design for access and mobility – general requirements for access – new building work; 2. AS1742.11–1999 Parking controls – manual of uniform traffic control devices 3. AS/NZS 2890.6–2009 Parking facilities –off street parking for people with disabilities; 4. Disability standards for accessible public 	

Performance outcomes	Acceptable outcomes	Response
	 transport 2002 made under section 31(1) of the Disability Discrimination Act 1992; AS/NZS 1158.3.1 – Lighting for roads and public spaces, Part 3.1: Pedestrian area (category P) lighting – Performance and design requirements; Chapter 7 Taxi Facilities, Public Transport Infrastructure Manual, Department of Transport and Main Roads, 2015. 	
PO35 Educational establishments are designed to ensure the safe and efficient operation of public passenger services, pedestrian and cyclist access and active transport infrastructure.	AO35.1 Educational establishments are designed in accordance with the provisions of the Planning for Safe Transport Infrastructure at Schools, Department of Transport and Main Roads, 2011.	Not applicable.

1-105 Racecourse Road, Cluden Traffic Impact Assessment

9.3.5 Transport Impact, Access and Parking Code

Performance outcomes	Acceptable outcomes	Comment
Transport impact	'	
P01	A01	COMPLIES WITH PO1.
The development is located on roads that are appropriate for the nature of traffic generated, having regard to the safety and efficiency of the transport network, and the functions and characteristics identified of the road hierarchy.	No acceptable outcome is nominated.	Refer to Geleon Traffic Impact Assessment report 50890-RP02-A which presents the findings of a traffic impact assessment on the external road network.
P02	AO2	COMPLIES WITH PO2.
Development does not compromise the orderly provision or upgrading of the transport network.	No acceptable outcome is nominated.	Refer to Geleon Traffic Impact Assessment Report 50890-RP02-A which presents the findings of a traffic impact assessment on the external road network.
PO3	AO3	COMPLIES WITH PO3.
On-site transport network infrastructure (including roads, parking, access and public transport, pedestrian and cyclist facilities) appropriately integrates and connects with surrounding networks.	No acceptable outcome is nominated.	Refer to the plans of development.
Site access		
PO4	A04	COMPLIES WITH PO4.
As far as practicable, development is designed to encourage travel by public transport, walking and cycling.	No acceptable outcome is nominated.	Footpath connections will be provided to the external road network. For further details in this regard, refer to the plans of development.
PO5	AO5	COMPLIES WITH AO5.
Access arrangements are appropriate for:	Access is provided in accordance with the standards identified in the	As part of the proposed transport infrastructure upgrades a new four-leg
(a) the capacity of the parking area;	Development manual planning scheme policy SC6.4 — SC6.4.5.5 Driveways, SC6.4.5.3 Public Transport Facilities and SC6.4.5.4 Car Parking.	single lane roundabout will be provided at the midpoint between Racecourse Road and Stuart Drive. Direct property access to the new
(b) the volume, frequency and type of vehicle usage;		Lakeside Drive extended will not be permitted with all development
 (c) the function and characteristics of the access road and adjoining road network; and 		traffic to flow through the eastbound and westbound approaches to this roundabout.
(d) the safety and efficiency of the road network.		For further details in relation to the location of the access, refer to Section 5.0 of Geleon Traffic Impact Assessment Report 50890-RP02-A.

Page 1 of 6 Issue Date: 20 September 2024 Document Set 1D: 26418546

PO6	A06	COMPLIES WITH PO6.
Where practical, access for cyclists and pedestrians is clearly distinguished from vehicle access.	No acceptable outcome is nominated.	Provision for cyclists and pedestrians will be detailed at the next stage of the development.
P07	A07	COMPLIES WITH AO7.
Access is located and designed to provide safe and easy access to the site, having regard to its position, width and gradient.	Access is provided in accordance with the standards identified in the Development manual planning scheme policy no. SC6.4 — SC6.4.5.5 Driveways and SC6.4.3 Standard Drawings	Access into the proposed development will be provided in accordance with the Development manual planning scheme policy no. SC6.4 — SC6.4.5.5 Driveways and SC6.4.3 Standard Drawings. Access details will be provided at the next stage of the development.
PO8	A08	COMPLIES WITH AO8.
All vehicles reasonably expected to use the site are able to travel the length of the driveway or driveway access without damage to vehicle or the driveway surface.	Access is provided in accordance with the standards identified in the Development manual planning scheme policy no. SC6.4 — SC6.4.5.5 Driveways, SC6.4.5.3 Public Transport Facilities and SC6.4.5.4 Car Parking.	Access into the proposed development will be provided in accordance with the Development manual planning scheme policy no. SC6.4 — SC6.4.5.5 Driveways, SC6.4.5.3 Public Transport Facilities and SC6.4.5.4 Car Parking. Access details will be provided at the next stage of the development.
PO9	A09	COMPLIES WITH AO9.
A driveway does not cause change in the level of a footpath that is unsafe or inaccessible for people with mobility difficulties.	Access is provided in accordance with the standards identified in the Development manual planning scheme policy no. SC6.4 — SC6.4.5.5 Driveways and SC6.4.3 Standard Drawings.	Access into the proposed development will be provided in accordance with the Development manual planning scheme policy no. SC6.4 — SC6.4.5.5 Driveways and SC6.4.3 Standard Drawings. Access details will be provided at the next stage of the development.
PO10	A010	COMPLIES WITH AO10.
Driveways are designed to withstand loadings from all vehicles reasonably expected to use the site.	Access is provided in accordance with the standards identified in the Development manual planning scheme policy no. SC6.4 — SC6.4.5.5 Driveways.	Access into the proposed development will be provided in accordance with the Development manual planning scheme policy no. SC6.4 — SC6.4.5.5 Driveways. Access details will be provided at the next stage of the development.
P011	A011	COMPLIES WITH A011.
A driveway does not allow water to pond on adjacent properties or adjacent buildings and does not allow water to enter a building or property.	Access is provided in accordance with the standards identified in the Development manual planning scheme policy no. SC6.4 — SC6.4.5.5 Driveways.	Access into the proposed development will be provided in accordance with the Development manual planning scheme policy no. SC6.4 — SC6.4.5.5 Driveways. Access details will be provided at the next stage of the development.
P012	A012	COMPLIES WITH AO12.
Construction of a driveway does not damage or interfere with the location, function of or access to any services and infrastructure.	Access is provided in accordance with the standards identified in the Development manual planning scheme policy no. SC6.4 — SC6.4.5.5	Access into the proposed development will be provided in accordance with the Development manual planning scheme policy no. SC6.4 — SC6.4.5.5 Driveways, SC6.4.5.3 Public Transport Facilities, SC6.4.5.4

Document Set 1D: 26418546 Version: 1, Version Date: 24/10/2024 Page 2 of 6

	Driveways, SC6.4.5.3 Public Transport Facilities, SC6.4.5.4 Car Parking and SC6.4.3 Standard Drawings.	Car Parking and SC6.4.3 Standard Drawings. Access details will be provided at the next stage of the development.
P013	A013	COMPLIES WITH AO13.
All vehicles reasonably expected to access the site can safely manoeuvre to allow vehicles to exit and enter in a forward motion.	Access is provided in accordance with the standards identified in Development manual planning scheme policy no. SC6.4 - SC6.4.5.5 Driveways, SC6.4.5.3 Public Transport Facilities, SC6.4.5.4 Car Parking and SC6.4.3 Standard Drawings such that all vehicles reasonably expected to access the site, can exit and enter in a forward motion with no more than a three-point turn.	Access into the proposed development will be provided in accordance with the Development manual planning scheme policy no. SC6.4 — SC6.4.5.5 Driveways, SC6.4.5.3 Public Transport Facilities, SC6.4.5.4 Car Parking and SC6.4.3 Standard Drawings. Access and service vehicle details will be provided at the next stage of the development.
Pedestrian and cyclist facilities		
P014	A014	COMPLIES WITH PO14.
Provision is made for the safe and convenient movement of pedestrians on-site and connecting to the external network, having regard to desire lines, legibility, safety, topographical constraints, shading and other weather protection and equitable access arrangements.	No acceptable outcome is nominated.	Provision for pedestrians will be detailed at the next stage of the development.
P015	A015	COMPLIES WITH PO15.
Provision is made for safe and convenient cycle movement to the site and within the site and connecting to the external network having regard to desire lines, users' needs, safety, topographical constraints and legibility.	No acceptable outcome is nominated.	Provision for cyclists will be detailed at the next stage of the development.
P016	A016	COMPLIES WITH PO16.
Parking areas, pathways and other elements of transport network infrastructure are designed to enhance public safety by discouraging crime and antisocial behaviour, having regard to:	No acceptable outcome is nominated.	The development will be designed at the detailed design stage to comply with these requirements.
(a) provision of opportunities for casual surveillance;		
(b) provision of lighting;		
(c) the use of fencing to define public and private spaces, whilst allowing for appropriate sight lines;		
(d) minimising potential concealment points and assault locations;		
(e) minimising opportunities for graffiti and other vandalism; and		
(f) restricting unlawful access to buildings and between buildings.		

		T
Parking		
P017	A017	COMPLIES WITH A017.
Provision is made for on-site vehicle parking to:	Parking is provided in accordance with the standards identified in Parking rates planning scheme policy no. SC6.10.	Car parking will be provided in accordance with the Parking rates planning scheme policy no. SC6.10.
(a) meet the demand likely to be generated by the development; and		
(b) avoid on street parking that would adversely impact on the safety or capacity of the road network or unduly impact on local amenity.		
P018	A018	COMPLIES WITH A018.
Parking ensures access is provided for people with disabilities.	Parking areas are designed in accordance with the standards identified in the Development manual planning scheme policy no. SC6.4 — SC6.4.5.4 Car Parking.	Parking areas will be designed in accordance with the standards identified in the Development manual planning scheme policy no. SC6.4 — SC6.4.5.4 Car Parking.
PO19	AO19	COMPLIES WITH PO19.
Where the nature of the proposed development creates a demand, provision is made for set-down and pick-up facilities by bus, taxis or private vehicle, which:	No acceptable outcome is nominated.	Provision will be made for set-down and pick-up facilities by bus, taxis or private vehicle.
(a) are safe for pedestrians and vehicles;		
(b) are conveniently connected to the main component of the development by pedestrian pathway; and		
(c) provide for pedestrian priority and clear sight lines.		
PO20	AO20	COMPLIES WITH PO20.
Parking and servicing areas are designed to:	No acceptable outcome is nominated.	Car parking design for the proposed development will be undertaken in
(a) be clearly defined, marked and signed;		accordance with Australian Standard AS2890.1 – Parking Facilities and AS2890.6 – Off-street parking for people with disabilities.
(b) be convenient and accessible;		The state of the s
(c) minimise large unbroken areas of hardstand to the extent practicable;		
(d) be safe for vehicles, pedestrians and cyclists;		
(e) provide shading;		

Document Set ID: 26418546 Version: 1, Version Date: 24/10/2024 Page 4 of 6 Issue Date: 20 September 2024 1-105 Racecourse Road, Cluden Traffic Impact Assessment

AO21	COMPLIES WITH AO21.
Parking areas are designed in accordance with the standards identified in the Development manual planning scheme policy no. SC6.4 — SC6.4.5.3 Public Transport Facilities and SC6.4.5.4 Car Parking.	Car parking design for the proposed development will be undertaken in accordance with Australian Standard AS2890.1 – Parking Facilities and AS2890.6 – Off-street parking for people with disabilities.
AO22	COMPLIES WITH PO22.
No acceptable outcome is nominated.	The development will be designed at the detailed design stage to comply with this requirement.
AO23	COMPLIES WITH PO23.
No acceptable outcome is nominated	The development will comply with this requirement.
A024	COMPLIES WITH PO24.
No acceptable outcome is nominated	The development will comply with this requirement.
AO25	Not applicable.
No acceptable outcome is nominated	
A026	COMPLIES WITH AO26.
Servicing areas are provided and designed in accordance with the standards identified in the Development manual planning scheme policy	Servicing areas will be provided and designed in accordance with the standards identified in the Development manual planning scheme policy
no. SC6.4 – SC6.4.5.3 Public Transport Facilities and SC6.4.5.4 Car Parking.	no. SC6.4 – SC6.4.5.3 Public Transport Facilities and SC6.4.5.4 Car Parking.
	Parking areas are designed in accordance with the standards identified in the Development manual planning scheme policy no. SC6.4 — SC6.4.5.3 Public Transport Facilities and SC6.4.5.4 Car Parking. AO22 No acceptable outcome is nominated. AO23 No acceptable outcome is nominated AO24 No acceptable outcome is nominated AO25 No acceptable outcome is nominated AO26 Servicing areas are provided and designed in accordance with the standards identified in the Development manual planning scheme policy no. SC6.4 – SC6.4.5.3 Public Transport Facilities and SC6.4.5.4 Car

Proposed Mixed Use Development 1-105 Racecourse Road, Cluden

1-105 Racecourse Road, Cluden Traffic Impact Assessment

(b) are able to accommodate the design service vehicle requirements; and		
(c) does not unduly impede vehicular, cyclist and pedestrian safety and convenience both within the site and external to the site.		
PO27	AO27	COMPLIES WITH AO27.
Refuse collection vehicles are able to safely access on-site refuse collection facilities.	Refuse collection areas are provided and designed in accordance with the standards identified in the Development manual planning scheme policy no. SC6.4 – SC6.4.22 Waste Management, SC6.4.5.3 Public Transport Facilities and SC6.4.5.4 Car Parking.	Refuse collection areas will be provided and designed in accordance with the standards identified in the Development manual planning scheme policy no. SC6.4 – SC6.4.22 Waste Management, SC6.4.5.3 Public Transport Facilities and SC6.4.5.4 Car Parking.
PO28	AO28	COMPLIES WITH PO28.
Servicing arrangements minimise any adverse impact on the amenity of premises in the vicinity, having regard to operating hours, noise generation, proximity to sensitive uses, odour generation and dust.	No acceptable outcome is nominated	The development will comply with this requirement.

GELEON

Geleon Consulting Pty Ltd ABN 58 668 001 303

Suite 12, Level 1, 3029 The Boulevard Emerald Lakes, Carrara PO Box 454, Nerang, Qld, 4211 tel (07) 5594 4473

geleon.com.au

