NORTH WARD FLOOD STUDY
BASE-LINE FLOODING ASSESSMENT

OCTOBER 2011

Flood Report
The flood modelling contained in this report does not in itself indicate whether any particular property has or has not been affected by floods.

The council considers that the information presented in the report is the best available at the time of the report’s preparation. However the modelling contained in this report is based upon projections, assumptions and analysis about circumstances that may not eventuate, or may eventuate in different combinations and with different outcomes.

Because of that, the information in the report is not provided with the intention that persons will rely upon its accuracy or completeness for the purpose of making decisions with financial or legal implications. Neither the council nor its officers will be liable in contract, negligence or otherwise for the consequences of any deficiency, inaccuracy or error in the report or for the consequences of any person relying upon the report.
Table of Contents

Executive Summary.. i
Glossary ... ii

1.0 Introduction .. 1
 1.1 Overview .. 1
 1.2 Study Area .. 1
 1.3 Scope of Works .. 3
 1.4 Study Approach .. 3

2.0 Available Data.. 4
 2.1 Topographic Data .. 4
 2.2 Stormwater Network .. 9
 2.3 Historical Flood Level .. 9
 2.4 Historical Rainfall ... 12
 2.5 Design Rainfall .. 12
 2.6 GIS Layers .. 12
 2.7 Previous Reports ... 18

3.0 Hydrological Assessment .. 19
 3.1 Overview .. 19
 3.2 XP-RAFTS ... 19
 3.3 Catchment ... 19
 Rainfall Loss .. 28
 Channel Routing ... 28
 3.4 Verification / Calibration ... 28
 3.5 Probable Maximum Flood .. 29
 3.6 Design Storm Flows ... 29

4.0 Hydraulic Assessment .. 30
 4.1 Overview .. 30
 4.2 MIKE FLOOD ... 30
 MIKE 11 ... 30
 MIKE 21 ... 30
 MIKE URBAN .. 30
 4.3 Model Setup ... 31
 4.4 Ryan Street Culvert ... 33
 4.5 Calibration ... 34
 January 1998 .. 34
 December 2007 ... 34
 4.6 Design Flood Assessment ... 36

5.0 Base-line Flooding Assessment .. 41
 5.1 Major Flow Paths .. 41
 NW1 ... 41
 NW2 ... 41
 NW3 ... 41
 NW4 ... 42
 NW5 ... 42
Executive Summary

The North Ward Flood Study – Baseline Flooding Assessment has been undertaken as part of Townsville City Council’s City Wide Flood Constraints Project. The project seeks to develop up to date flood models for the city of Townsville at scales suitable for:

- defining flood levels for most urban properties;
- identifying the flood hazard overlay for the planning scheme;
- evaluating recent and future flood mitigation projects; and
- assisting the disaster management process.

The newly developed flood model for North Ward was undertaken using XP-RAFTS, a hydrologic runoff routing model, and MIKE FLOOD, a combined 1D and 2D hydraulic model. The model incorporates North Ward’s catchments, underground stormwater system, natural open channels, open drains, road kerb and channel, and flood plains. The critical storm duration for the study area was determined to be either 1 or 1.5 hours for most locations.

This study identifies water levels, depths, and flooding extent for storm Average Recurrence Intervals from 2 year to the Probable Maximum Flood. The flooding has been assessed on the basis of the confirmed land uses within the study area.

The results of the model confirmed problematic areas that were already known to Council. The area around Howitt and Rose Streets was demonstrated to be significantly affected by flooding and is unlikely to have a low cost solution.

The model was used to demonstrate significant improvements in the Mitchell Street area due to recent mitigation works. The model shows water depth improvements of over 200mm and time of inundation improvements in the order of several hours. The area is still a flooding problem though and providing full flood immunity will be quite costly.

Flood hazard maps have been developed to assist with floodplain planning. They show hazardous zones that develop in the 50, 100, and 500 Year ARI storms, and in the Probable Maximum Flood. A road closure analysis has also been completed. It shows that Heatleys Parade is an area of concern for evacuation as a 10 year ARI event will close the road, cutting access to Rowes Bay and Pallarenda.

An assessment of the impact of climate change on flooding has been completed. The analysis assumed a sea level rise of 0.88m by 2100, as specified by *Queensland Coastal Plan*. The effect of an increased sea level due to climate change is most evident in more frequent, less intense storms. The rise in flood levels is only significant around the Rose Street area. The effect of an increase in existing Average Recurrence Interval storm intensities has not been assessed.
Glossary

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEP</td>
<td>Annual Exceedance Probability</td>
</tr>
<tr>
<td>ARI</td>
<td>Average Recurrence Interval</td>
</tr>
<tr>
<td>ARR</td>
<td>Australian Rainfall and Runoff (1998)</td>
</tr>
<tr>
<td>AusIFD</td>
<td>A program to calculate average rainfall intensities and temporal patterns within Australia</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital Elevation Model</td>
</tr>
<tr>
<td>DFE</td>
<td>Defined Flood Event</td>
</tr>
<tr>
<td>GSDM</td>
<td>General Short Duration Method – A method of calculating Probable Maximum Precipitation</td>
</tr>
<tr>
<td>GSS</td>
<td>Geospatial Solutions Unit</td>
</tr>
<tr>
<td>HAT</td>
<td>Highest Astronomical Tide - The highest level of water which can be predicted to occur under any combination of astronomical conditions.</td>
</tr>
<tr>
<td>HEC-RAS</td>
<td>Steady State One Dimensional Hydraulic Model</td>
</tr>
<tr>
<td>IFD</td>
<td>Intensity Frequency Distribution</td>
</tr>
<tr>
<td>LiDAR</td>
<td>Light Detection and Ranging (Aerial Laser Survey)</td>
</tr>
<tr>
<td>MHWS</td>
<td>Mean High Water Springs - The average height of the high waters of spring tides</td>
</tr>
<tr>
<td>MIKE11</td>
<td>Fully Dynamic One Dimensional Hydraulic Model</td>
</tr>
<tr>
<td>MIKE21</td>
<td>Fully Dynamic Two Dimensional Hydraulic Model</td>
</tr>
<tr>
<td>MIKE FLOOD</td>
<td>Fully Dynamic Coupled One & Two Dimensional Hydraulic Model</td>
</tr>
<tr>
<td>MLWS</td>
<td>Mean Low Water Springs</td>
</tr>
<tr>
<td>NWFS</td>
<td>North Ward Flood Study</td>
</tr>
<tr>
<td>PMF</td>
<td>Probable Maximum Flood</td>
</tr>
<tr>
<td>PMP</td>
<td>Probable Maximum Precipitation</td>
</tr>
<tr>
<td>QUDM</td>
<td>Queensland Urban Drainage Manual</td>
</tr>
<tr>
<td>Spring Tides</td>
<td>The tide that rises highest and falls lowest from the mean sea level within a lunar cycle.</td>
</tr>
<tr>
<td>TFHAS</td>
<td>Townsville Flood Hazard Assessment Study</td>
</tr>
<tr>
<td>XP-RAFTS</td>
<td>An urban and rural runoff routing application</td>
</tr>
</tbody>
</table>
1.0 Introduction

1.1 Overview

The North Ward Flood Study – Baseline Flooding Assessment has been undertaken as part of Townsville City Council’s City Wide Flood Constraints Project. The project seeks to develop up to date flood models for the city of Townsville at scales suitable for:

- defining flood levels for most urban properties;
- identifying the flood hazard overlay for the planning scheme;
- evaluating recent and future flood mitigation projects; and
- assisting the disaster management process.

This study incorporates, recent works at Mitchell Street, the latest Light Detection and Ranging (LiDAR) topographic data, as well as recent infrastructure survey to develop up to date hydrologic and hydraulic flood models for North Ward.

1.2 Study Area

The North Ward study covers some of the oldest and most valuable areas of Townsville including the iconic landmarks of The Strand, and Castel Hill. The catchment also contains over 1500 residential properties, the older of which are particularly flood prone.

North Ward is a series of standalone catchments; it has no significant inflows from other catchments with all outflows directly into Cleveland Bay. The outlets of the North Ward subcatchments are in the following areas:

- Soroptimist Park
- Marshall Street
- Ryan Street
- Howitt Street
- Stuart Street
- Kennedy Street
- Gregory Street
- Fryer Street

The size of the catchment is quite small relative to other catchments in Townsville, having a total area of only 414 Ha. The North Ward catchment is almost fully developed to its potential. The only undeveloped areas left are located in the higher parts of Castle Hill, which are the headwaters of the catchment. Along with the fact that Castle Hill is designated Green Space by council, the undeveloped areas are very steep making further development unlikely. An increase in fraction impervious within the North Ward study area in the short to medium term is unlikely.

Figure 1.2.1 show the North Ward Study Area
Figure 1.2.1: Study Area
1.3 Scope of Works
The scope of works for this *Baseline Flooding Assessment* includes:

- review of previous engineering reports and data;
- collation of relevant data including rainfall, construction drawings, and topographic survey;
- identification of a suitable approach for hydrologic and hydraulic modelling;
- development and calibration of hydrologic and hydraulic models; and
- identification of the base-line flooding issues for North Ward.

1.4 Study Approach
The flood model is the key tool used in completing a flood study. It is used to numerically simulate flooding to create flood maps, determine velocities, determine road closures, assess mitigation options, and classify the flood immunity of properties and structures. No interaction with other study areas of the City Wide Flood Constrains Project has been considered.

XP-RAFTS is the hydrologic model used to determine inflows into the hydraulic models.

The MIKE FLOOD hydraulic model uses input from the hydrologic model and the available data listed in chapter 2. It provides results as areas of inundation, water depth, surface elevation, and velocity. These results are then used to make the conclusions listed above. To ensure the accuracy of the model, historic events are run through the model and the levels are compared to those surveyed after the event. Events from January 1998 and December 2007 were used to calibrate this model.
2.0 Available Data

2.1 Topographic Data

The main topographic data used in modelling North Ward was Townsville City Council LiDAR. LiDAR was used for determining catchment delineation, sub-catchment slope, sub-catchment routing, and for basic topography of the model. The other source of topographic data for the study was the Mitchell Street Drainage Report. This report details the changes in topography due to the constructed flood mitigation works at Mitchell Street.

Figure 2.1.1 A1 to B2 shows the LiDAR data in the form of contours over the North Ward study area.
Figure 2.1.1: Topographic Data
Figure 2.1.1: Topographic Data
Figure 2.1.1: Topographic Data
Figure 2.1.1: Topographic Data

2009 Contours

1m intervals
2.2 Stormwater Network

All council Stormwater Network data was available to use for the flood study. It was available on both GIS software and Mosaic. Surveyed invert levels were also obtained from survey completed by Brazier Motti for the project. Figure 2.2.1 shows the available stormwater network and the surveyed points.

2.3 Historical Flood Level

North Ward is a stand alone catchment with several small outlets and no stream gauges. The only historical flood data available are a few surveyed spot levels from the January 1998 event, and a few from the December 2007 event which were extracted from the Mitchell Street Drainage Report October 2008. These flood levels were used in a joint calibration of the hydraulic and hydrologic models. Figure 2.3.1 show the locations of surveyed flood levels used for calibration and Table 2.3.1 shows the values at these points.

<table>
<thead>
<tr>
<th>Street</th>
<th>Surveyed Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 Alexandra St</td>
<td>19.75</td>
</tr>
<tr>
<td>300 Stanley St</td>
<td>31.89</td>
</tr>
<tr>
<td>13 Gregory St</td>
<td>14.38</td>
</tr>
<tr>
<td>12 Redpath St</td>
<td>10.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Street</th>
<th>Surveyed Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>76 Mitchell St</td>
<td>6.8</td>
</tr>
<tr>
<td>88 Mitchell St</td>
<td>6.8</td>
</tr>
</tbody>
</table>