
Traffic impact assessment

Northern Quartz Campus

Traffic Impact Assessment - BESS, Substation and Transmission Line

Solquartz and Private Energy Partners

E231133 RP2

August 2025

Version	Date	Prepared by	Reviewed by	Comments	
V1-0	01/08/2025	C. Cheng	A. Uddin	Client review	
V2-0	28/08/2025	C. Cheng	A. Uddin	For use	

Approved by

Aldi

Abdullah Uddin

Associate Traffic Engineer

RPEQ ID: 26476 28 August 2025

Level 187 Wickham Terrace

Spring Hill QLD 4000 ABN: 28 141 736 558

This report has been prepared in accordance with the brief provided by Solquartz and Private Energy Partners and, in its preparation, EMM has relied upon the information collected at the times and under the conditions specified in this report. All findings, conclusions or recommendations contained in this report are based on those aforementioned circumstances. This report is to only be used for the purpose for which it has been provided. Except as permitted by the Copyright Act 1968 (Cth) and only to the extent incapable of exclusion, any other use (including use or reproduction of this report for resale or other commercial purposes) is prohibited without EMM's prior written consent. Except where expressly agreed to by EMM in writing, and to the extent permitted by law, EMM will have no liability (and assumes no duty of care) to any person in relation to this document, other than to Solquartz and Private Energy Partners (and subject to the terms of EMM's agreement with Solquartz and Private Energy Partners).

@ EMM Consulting Pty Ltd, Level 10, 201 Pacific Highway, St Leonards NSW 2065. 2025. ABN: 28 141 736 558

Document Set ID: 27523373 Version: 1, Version Date: 08/09/2025

Executive Summary

ES1 Introduction

This report details the traffic impact assessment (TIA) undertaken for the Northern Quartz Campus (NQC) Battery Energy Storage System (BESS), Substation and transmission line Project (the development) located at 132 Bidwilli Road, Calcium.

The development involves the construction and operation of a 780 megawatt (MW) BESS and substation facility with its ancillary facility. The BESS, substation and transmission line will facilitate electricity supply for future Metallurgical Silicon (MG-Si) and Polysilicon (Poly-Si) manufacturing facilities as part of the broader NQC project. The purpose of the report is to identify the traffic impact to the adjoining road network due to the construction of this development.

ES2 Existing conditions

Traffic generated as a result of the development is anticipated to approach the development site from the north along Flinders Highway by using Flinders Highway/Woodstock-Giru Road/Glenn Road intersection. As part of this study, the existing traffic volumes at this intersection has been surveyed during the AM and PM peak hours in May 2025.

Currently vehicles access the precinct via Glenn Road/Woodstock Avenue /Jones Road /No-Name Road. As part of the masterplan development of this precinct, Jones Road will be realigned and have a direct connection at Flinders Highway. No-Name Road will be upgraded and extended to Bidwilli Road. The road upgrades are being completed by Townsville City Council (TCC) and are likely to occur before commencement of construction of the development.

ES3 Assessment of impacts

Traffic generated by the development will be the highest during peak construction in 2027 and is expected to be negligible during operations. There are expected to be a maximum of approximately 93 workers during peak construction, all driving to the site.

During the peak construction for a period of three months, traffic is expected to reach 93 light vehicle movements and 10 heavy vehicle movements, for a total of 103 vehicle movements the AM and PM peak hours (inbound and outbound).

The Flinders Highway/Woodstock-Giru Road/Glenn Road intersection is expected to maintain a level of service LOS B with the construction traffic. However, with neighbouring development traffic, the intersection will operate at LOC C during the AM peak hour. Nonetheless, there will not be any excessive queuing by the inbound vehicles that will affect the right turn by on Flinders Highway. Even with construction and cumulative traffic, the intersection will have sufficient capacity to accommodate additional traffic.

It has been identified that there are two major Drive IT events per annum which results in significant traffic generation at this precinct. To minimise any potential traffic impact, it is recommended that the heavy vehicle deliveries are to be restricted during the time of the event for these two days.

The Austroads intersection turn warrant assessment shows that no road infrastructure upgrade is required at Flinders Highway/Woodstock-Giru Road/Glenn Road as this intersection already have dedicated right and left turn bays at the north and south approaches.

A level crossing assessment is undertaken at the realigned Jones Road. It is recorded that there are two train movements during the AM peak and one train movement during the PM peak hours that pass this level crossing. The assessment shows that due to the cumulative traffic, Flinders Highway will be impacted due to the excessive queuing. Therefore, it is recommended that the heavy vehicle deliveries are to be restricted during the train crossing at this level crossing. The heavy vehicle movement will be controlled by a Construction Traffic Management Plan (CTMP) to be prepared in collaboration with TCC.

ES4 Road upgrades and mitigation measures

The proposed mitigation measures to minimise the potential traffic impact are summarised below:

- The CTMP to be drafted to cover the Drivers Code of Conduct which will outline all relevant information in relation to haulage traffic e.g. haulage route, delivery time and other associated matters as outlined in Section 7.2.1.
- Heavy vehicle operation to the site is to be restricted during the two annual major events for Drive IT.
- Inbound heavy vehicles are to avoid timing while the level crossing on Jones Road is operational.

It is assumed that all road infrastructure in this precinct will be constructed in accordance with the masterplan to ensure unimpeded access to the development site.

TABLE OF CONTENTS

Ex	ecutiv	e Summary	ES.1
1	Intro	oduction	1
	1.1	Overview	1
	1.2	Development description	1
	1.3	Development areas	1
	1.4	Site access	1
	1.5	Purpose of this report	4
	1.6	Pre-lodgement advice	4
2	Legis	slation, policy, standards and guidelines	5
	2.1	Statutory guidelines	5
	2.2	Regulatory requirements	5
3	Met	hodology	6
	3.1	Site visit	6
	3.2	Desktop research and analysis	6
	3.3	Data analysis	6
4	Existing environment		
	4.1	Road network	7
	4.2	Key intersection	12
	4.3	Existing traffic volumes	14
	4.4	Level crossing	14
	4.5	Crash data analysis	17
	4.6	Public transport	19
	4.7	Active transport	19
	4.8	Parking	20
5	Traf	fic generation	21
	5.1	Baseline traffic volumes	21
	5.2	Trip distribution	22
	5.3	Construction stage	22
	5.4	Operational traffic	25
	5.5	Cumulative traffic	25
	5.6	Vehicle type	31
	5.7	Car parking	31

 6 Impact assessment 6.1 Intersection performance 6.2 Turn warrant assessment 6.3 Road safety assessment 6.4 Impact on public and active transport infrastructure 6.5 Access to properties 6.6 Level crossing assessment 	32 32 33 36
 Turn warrant assessment Road safety assessment Impact on public and active transport infrastructure Access to properties 	33
 6.3 Road safety assessment 6.4 Impact on public and active transport infrastructure 6.5 Access to properties 	
6.4 Impact on public and active transport infrastructure 6.5 Access to properties	36
6.5 Access to properties	50
	36
6.6 Level crossing assessment	36
	37
6.7 Construction Traffic Management Plan	39
7 Road upgrades and mitigation measures	40
7.1 Schedule of road upgrades	40
7.2 Construction	40
7.3 Operation	42
7.4 Decommissioning	43
8 Conclusion	44
References	45
Abbreviations	46
Glossary	48
Attachments	
Attachment A Townsville Aimsun Integrated Model	
Attachment B Drive IT letter	
Attachment C Intersection count	
Attachment D SIDRA layout and movement summary	
Attachment E SIDRA level crossing assessment	
Attachment F Swept path	
Tables	
Table 4.1 Flinders Highway	9
Table 4.2 Glenn Road	10
Table 4.3 Jones Road	11
Table 4.4 Flinders Highway/Woodstock-Giru Road/Glenn Road intersection	12
Table 4.5 The Inlander (Train number 3M34) – Townsville to Mount Isa train timetable	15
Table 4.6 The Inlander (Train number 3231) – Mount Isa to Townsville train timetable	15
Table 4.7 Sectional running times for the freight trains	16
Table 4.8 Crash history between 2019 and June 2024 within 6 km of the development sit	te 19
Table 5.1 Peak hour traffic generation during 2027	24

Table 6.1	Intersection LOS standards	32
Table 6.2	SIDRA modelling result for Flinders Highway/Woodstock-Giru Road/Glenn Road intersec	ction 33
Table 6.3	Queue length on Jones Road at the level crossing	39
Table 7.1	Construction traffic mitigation measures	42
Figures		
Figure 1.1	Regional context	2
Figure 1.2	Local context	3
Figure 4.1	Road Hierarchy near development site	8
Figure 4.2	Flinders Highway/Woodstock-Giru Road/Glenn Road intersection	13
Figure 4.3	2025 surveyed peak hourly traffic volumes	14
Figure 4.4	Crash data between 2019 and June 2024 within 6 km of the development site	18
Figure 5.1	Number of FTE onsite during construction period	21
Figure 5.2	2027 baseline peak hourly traffic volumes	22
Figure 5.3	2027 peak hourly construction traffic volumes	24
Figure 5.4	2027 peak hourly baseline + construction traffic volumes	25
Figure 5.5	Cumulative assessment – development location	27
Figure 5.6	Estimated peak hourly traffic generation by QPM for the cumulative assessment	28
Figure 5.7	Estimated peak hourly traffic generation by Drive IT for the cumulative assessment	29
Figure 5.8	Estimated peak hourly traffic generation by EGH2 for the cumulative assessment	30
Figure 5.9	2027 peak hourly baseline + construction + cumulative traffic volumes	30
Figure 6.1	Austroads warrant design charts for high-speed rural intersection turning lanes	34
Figure 6.2	Warrant design chart for left turning lane requirement on the west approach	35
Figure 6.3	Warrant design chart for right turning lane requirement on the west approach	35
Figure 6.4	Sight distance to the left and right from Glenn Road to Flinders Highway	36
Figure 6.5	2027 baseline traffic volumes at the realigned Jones Road level crossing	37
Figure 6.6	2027 baseline + construction traffic volumes at the realigned Jones Road level crossing	38
Figure 6.7	2027 baseline + construction + cumulative traffic volumes at the realigned Jones Road le crossing	evel 38
Photographs		
Photograph 4.1	Flinders Highway facing south nearby Bidwilli Road (taken on 14 May 2025)	9
Photograph 4.2	Glenn Road facing west near railway level crossing (taken on 14 May 2025)	10
Photograph 4.3	Jones Road facing west near Woodstock Avenue (taken on 14 May 2025)	11
Photograph 4.4	Glenn Road level crossing (taken on 14 May 2025)	16
Photograph 4.5	Freight train traversing the level crossing looking from Jones Road (taken on 10 March 2	.021)

Photograph 4.6 A cycling lane on Flinders Highway looking north from Glenns Road (taken on 14 May 2025)

20

E231133 | RP2 | v2-0 iv

Document Set ID: 27523373 Version: 1, Version Date: 08/09/2025

1 Introduction

1.1 Overview

Solquartz, a wholly owned portfolio company of funds managed by Quinbrook Infrastructure Partners (Quinbrook), and Private Energy Partners Pty Ltd (PEP), an affiliate enterprise of Quinbrook and Quinbrook's dedicated development, delivery and operations service provider, are proposing to develop a BESS, substation and transmission lines to facilitate electricity supply for future Metallurgical Silicon (MG-Si) and Polysilicon (Poly-Si) manufacturing facilities as part of the broader Northern Quartz Campus (NQC) project.

The premises which form the development application is on part of Lot 19 SP321818 and part of Lot 87 on RP911426, near Woodstock in TCC local government area. The development includes the proposed overhead transmission line which traverses south along the western edge of the project premises and connect into the future Powerlink Calcium substation.

EMM Consulting Pty Ltd (EMM) has been engaged by Private Energy Partners Pty Ltd (PEP) to prepare a Traffic impact assessment (TIA) for the development.

1.2 Development description

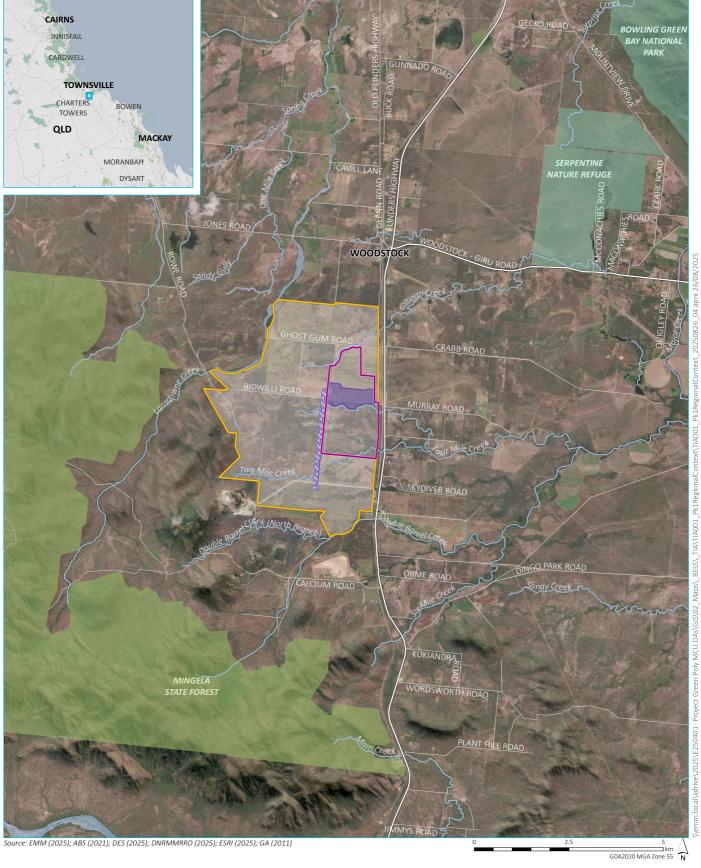
The development involves the construction and operation of a 780 MW BESS and substation facility which will be supported by enabling infrastructure including roads, parking, switchgear, transformers, site offices and onsite storage areas. The BESS will provide firming for the electricity supply provided to the MG-Si and Poly-Si manufacturing facilities as part of the larger NQC project. A 275 kV transmission line is proposed between the NQC substation and the Powerlink Calcium substation, the length of this transmission line is 2658 m and incudes 21 transmission towers. The Powerlink Calcium substation does not form part of this application though the connection of the transmission lines into it does.

1.3 Development areas

The development site is at 132 Bidwilli Road, Calcium Townsville, approximately 40 km south of Townsville within the LEIP (Figure 1.1 and Figure 1.2). The Project is proposed to be located centrally on part of Lot 19 on SP321818 and part of Lot 87 on RP911426.

The development includes the proposed overhead transmission line which traverses south along the western edge of the project premises and connect into the future Powerlink Calcium substation. The overhead transmission line interacts with the following road reserves and lot boundaries:

- Lot 19/SP321818
- Lot 87/RP911426
- Lot 30/SP321818
- Lot 55/E124248
- Lot 65/E124264


- No Name Road
- Bidwilli Road
- An unnamed road reserve
- Manton Quarry Road.

1.4 Site access

Access to the premises during both construction and operation phases will be via the northern LEIP access intersection point which includes Flinders Highway via Glenn Road and Jones Road. The proposed site access on Bidwilli Road will act as a new left-in/right-out driveway as all vehicles will arrive and depart from/to the north (Figure 1.2). This access will be used during construction and operation.

E231133 | RP2 | v2-0

Document Set ID: 27523373 Version: 1, Version Date: 08/09/2025

KEY

Lansdown Eco-Industrial Precinct

■ Northern Quartz Campus

Package 1- Premises

--- Package 1- Transmission line

Existing environment

Major road

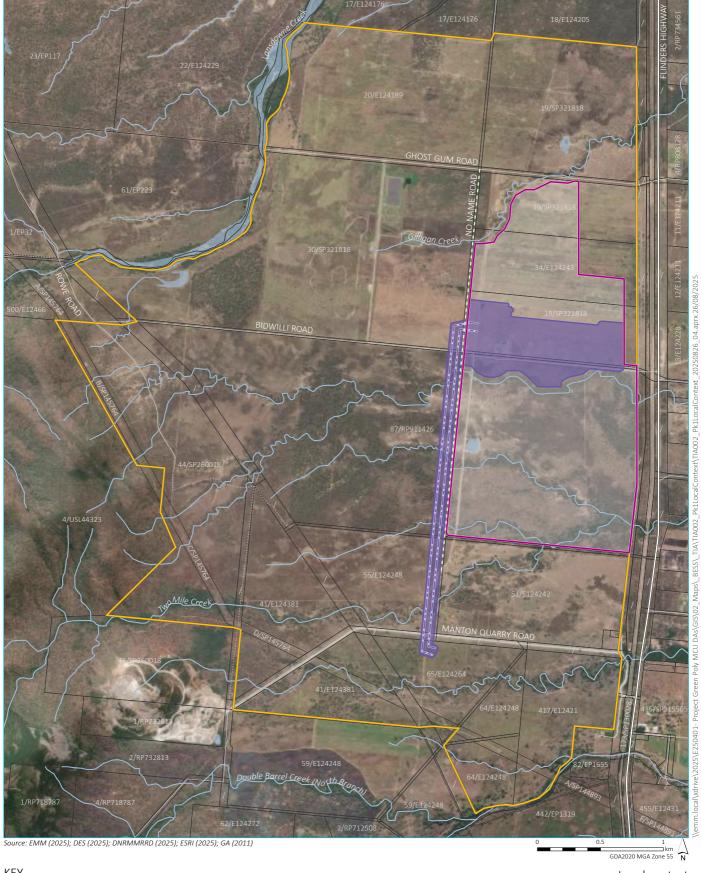
- Minor road

····· Vehicular track

Named watercourse

National park/nature reserve

Named waterbody


State forest

Regional context

Northern Quartz Campus Package 1- BESS, transmission line and substation Traffic Impact Assessment Figure 1.1

Document Set ID: 27523373 Version: 1, Version Date: 08/09/2025

KEY

Lansdown Eco-Industrial Precinct

■ Northern Quartz Campus

Package 1- Premises

--- Package 1- Transmission line

--- No Name Road (proposed)

Existing environment

— Major road

Minor road

Vehicular track Watercourse/drainage line

Waterbody

Cadastral boundary

Local context

Northern Quartz Campus Package 1- BESS, transmission line and substation Traffic Impact Assessment Figure 1.2

1.5 Purpose of this report

This TIA has been prepared to support the Development Application of the proposed development, for submission to Townsville City Council (TCC) for assessment.

This TIA has been prepared generally in accordance with the requirements of the Queensland Government's *Guide to Traffic Impact Assessment* (DTMR 2018) and incorporates the following investigations and analysis:

- background traffic data review
- site inspection and current traffic surveys
- SIDRA intersection analysis
- railway level crossing assessment
- future road upgrade requirements and maintenance impacts.

A visual inspection of the primary affected roads, comprising Flinders Highway, Glenn Road and Jones Road has been undertaken to confirm the current general road widths and traffic conditions for these routes. Photographs and videos have been taken at the key development access intersections.

The intent of the report is to identify and address the traffic impact resulting from the development and how this interacts with cumulative traffic impacts for the LEIP.

1.6 Pre-lodgement advice

The first formal pre-lodgement meeting with TCC was held on 27 November 2024 to introduce TCC to Solquartz team and the project components. A follow up formal meeting with TCC was held on 17 April 2025 (PLM25/0068) to introduce the planning pathway, project components and detail on the BESS development. Meeting minutes received from TCC can be referred to the application package materials.

The third meeting was held with the TCC planning team and Owner's team on 24 July 2025. The purpose of this meeting was to inform the TCC Owners Consent team of the project.

Informal communications with the Planning assessment team at TCC has been ongoing during the baseline studies for the project site since August 2024. Outcomes from which have identified alignment of model input considerations and technical model scenarios.

2 Legislation, policy, standards and guidelines

2.1 Statutory guidelines

The *Guide to Traffic Impact Assessment* (DTMR 2018) outlines the considerations that need to be documented in a TIA. This includes the impacts the development proposal is likely to have on local and State-controlled road (SCR) network operations and on transport infrastructure, and recommends measures to avoid, manage and mitigate these impacts.

In addition, the TIA has been prepared with reference to the following guidelines:

- Townsville City Plan Part 9.3.5: Transport impact, access and parking code (Townsville City Council 2020)
- Austroads Guide to Road Design Part 3: Geometric Design (Austroads 2021a)
- Austroads Guide to Road Design Part 4A: Unsignalised and Signalised Intersections (Austroads 2023)
- Austroads Guide to Traffic Management Part 12: Integrated Transport Assessments for Developments (Austroads 2020a).

2.2 Regulatory requirements

The key applicable legislations informing the TIA are the QLD *Transport Infrastructure Act 1994* (TI Act), *Land Act 1994* (Land Act) and *Rail Safety National Law Act 2017* (RSNL Act).

The overall objective of the TI Act is to provide a regime that allows for and encourages effective integrated planning and efficient management of a system of transport infrastructure. For roads this means:

- those of national and State significance can be effectively planned and efficiently managed
- adequate levels of safety and community access to the road network can be provided
- that impacts on adjacent developments from environmental emissions generated by SCRs can be addressed.

One of the main purposes of the Land Act is to allocate land for development in the context of the State's planning framework and applying contemporary best practice in design and land management.

The RSNL Act provides for safe railway operations in Australia by establishing the Office of the National Rail Safety Regulator. This act makes provision for a national system of rail safety and for the effective management of safety risks associated with railway operations.

3 Methodology

3.1 Site visit

EMM's traffic team conducted a site visit on Tuesday and Wednesday 13 and 14 May 2025 (non-school holiday period) to inspect and survey the relevant road network and the key affected intersection at the vicinity of the site. Photographs were taken during the site visit which are presented throughout this TIA.

3.2 Desktop research and analysis

Traffic related information, e.g. Townsville Aimsun Integrated Model, Queensland Government Open Data Portal and Queensland Globe were reviewed in preparation of this TIA.

3.3 Data analysis

EMM conducted intersection traffic survey at the key affected intersection. The details of this survey are explained in Section 4.2.

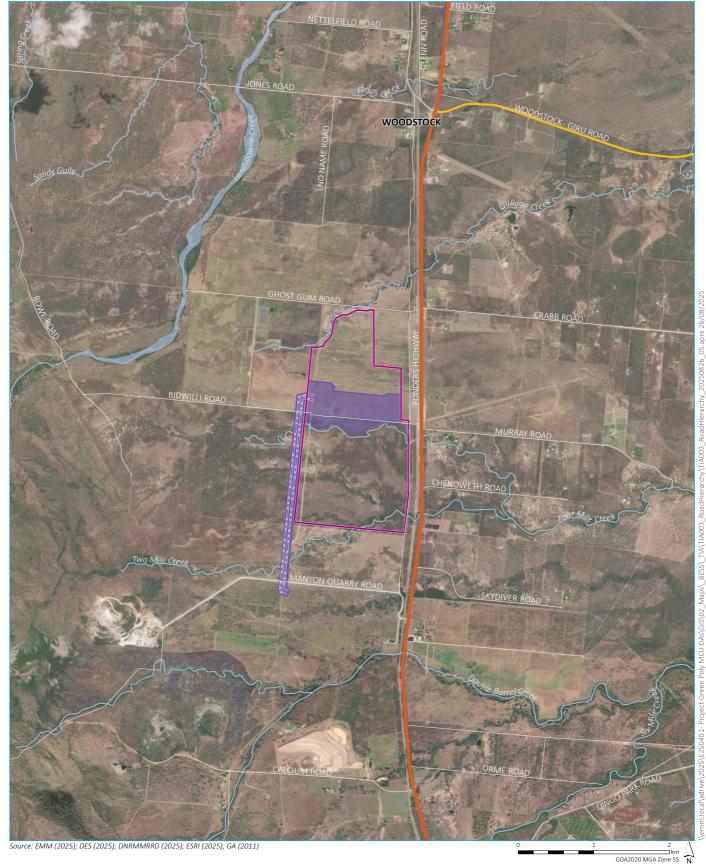
3.3.1 Identify capacity of the road network (existing and forecast)

Intersection modelling software SIDRA has been used to analyse existing and forecast intersection performance. Details on the results of existing and development intersection modelling scenarios are explained in Section 6.1.

3.3.2 Impacts of the road network due to the proposed development and cumulative traffic

A detailed assessment of the traffic impact and road upgrade work due to the development as well as the cumulative developments have been undertaken. This is detailed in Section 6.

4 Existing environment


4.1 Road network

The DTMR comprises of four administrative classifications in its hierarchy of roads. These are:

- National Highway (NH)
- State Strategic Road (SSR)
- Regional Road (RR)
- District Road (DR).

The above four classification are State Controlled Roads. The local roads are managed by local Councils.

The premises is bounded by Flinders Highway on the east and by Bidwilli Road on the south. Flinders Highway is a National Highway and forms part of the DTMR strategic highway network and is designated as a heavy vehicle transport link capable, servicing up to and including Class 12 (Triple Road Train) vehicles. Glenn Road, Jones Road and Bidwilli Road are managed by TCC (i.e. a local road). The LEIP development proposes No-Name Road reserve which runs north-south and traverses on the west of the development site. This hierarchy is shown in Figure 4.1 (near premises). An overview of each of the key roads is provided in Table 4.1 to Table 4.3.

KEY

■ Northern Quartz Campus

Existing environment

- Named watercourse

Named waterbody

Package 1- Premises

— Package 1- Transmission line

Road hierarchy

National highway

— State road

— Local road

Road hierarchy near development site

Northern Quartz Campus Package 1- BESS, transmission line and substation Traffic Impact Assessment Figure 4.1

4.1.1 Flinders Highway

An overview of Flinders Highway is summarised in Table 4.1.

Table 4.1 Flinders Highway

Aspect	Description
Road classification and connectivity	National Highway between Bruce Highway (Townsville) and Barkley Highway (Cloncurry), passing through local and regional towns such as Julia Creek and Richmond
Alignment	North – south in the vicinity of the site
Number of lanes	One lane each way, excluding near the intersections
Carriageway type	Sealed road
Carriageway width	Varies in various section of the road, approximately 9 m wide
Posted speed limit	110 km/h
Heavy vehicle access	Approved for road trains type 2 ¹
Traffic function	Carries regional and local traffic between townships

Note: 1. Type 2 road train means a road train using either a rigid truck hauling unit towing two trailers when the combination length is no longer than 47.5 m or a road train using a prime mover hauling unit towing three or four trailers when the combination length is no longer than 53.5 m.

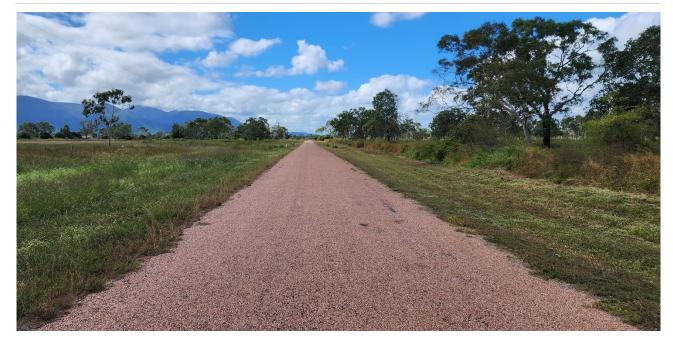
Photograph 4.1 Flinders Highway facing south nearby Bidwilli Road (taken on 14 May 2025)

4.1.2 Glenn Road

An overview of Glenn Road is summarised in Table 4.2.

Table 4.2 Glenn Road

Aspect	Description			
Road classification and connectivity	Local road			
Alignment	East - west			
Number of lanes	One lane each way			
Carriageway type	Sealed road			
Carriageway width	Approximately 5.5-6.5 m wide			
Default speed limit	100 km/h general speed rural speed limit			
Heavy vehicle access	No			
Traffic function	Predominantly carries local traffic			
Additional comments	There is a railway level crossing approximately 280 m west of Flinders Highway. A cycling lane is provided for a short section along the northern departure lane near the Flinders Highway/Woodstock-Giru Road/Glenn Road intersection			

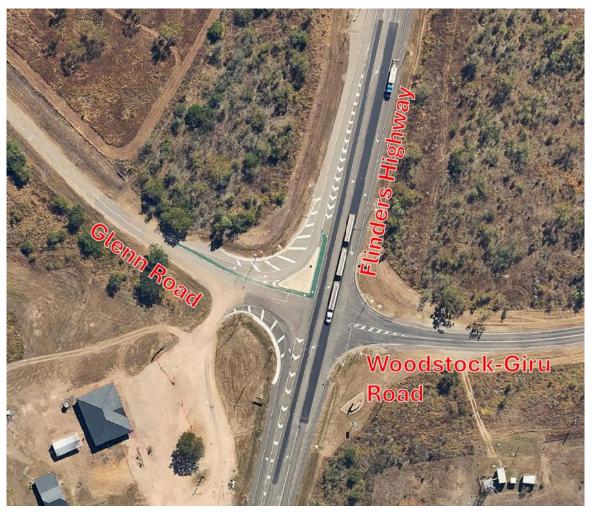

Photograph 4.2 Glenn Road facing west near railway level crossing (taken on 14 May 2025)

4.1.3 Jones Road

An overview of Jones Road is summarised in Table 4.3.

Table 4.3 Jones Road

Aspect	Description
Road classification and connectivity	Local road between Woodstock Avenue and Rowe Road
Alignment	East - west
Number of lanes	One lane
Carriageway type	Sealed road
Carriageway width	Approximately 5 m wide
Default speed limit	100 km/h general speed rural speed limit
Heavy vehicle access	No
Traffic function	Predominantly carries local traffic


Photograph 4.3 Jones Road facing west near Woodstock Avenue (taken on 14 May 2025)

4.2 Key intersection

A description and layout of the Flinders Highway/Woodstock-Giru Road/Glenn Road intersection is provided in Table 4.4 and Figure 4.2.

Table 4.4 Flinders Highway/Woodstock-Giru Road/Glenn Road intersection

Aspect	Description
Location from the site	Approximately 3.7 km north of the development site
Intersection control	Priority and stop controlled intersection
Major road	Flinders Highway
North approach	Two departure and three approach lanes. Kerbside left turn lanes on approach and departure, as well as the right turn lane onto Glenn Road are short lanes.
East approach	One approach and one departure lane
South approach	Three approach and two departure lanes. Kerbside lanes on approach and departure as well as the right turn onto Woodstock Giru Road are short lanes.
West approach	One approach and one departure lane. An additional left turn lane is provided onto Flinders Highway.
Pedestrian connectivity	There is no pedestrian connectivity
Traffic function	Predominantly carries regional traffic and provide access to the rural properties
Speed limit	110 km/h on Flinders Highway Assume default 100 km/h on Glenn Road and Woodstock-Giru Road
Additional comments	Dedicated left and right turn bays are provided on both north and south approaches Bicycle connectivity is provided on west approach

Source: Queensland Globe

Figure 4.2 Flinders Highway/Woodstock-Giru Road/Glenn Road intersection

4.3 Existing traffic volumes

4.3.1 Intersection counts

Intersection traffic survey was undertaken at Flinders Highway/Woodstock-Giru Road/Glenn Road intersection on 13 and 14 May 2025 (weekday, non-school holiday) from 7 am to 9 am and from 3 pm to 5 pm. The survey identified the following peak hours for this intersection:

- 7:15 am to 8:15 am
- 4 pm to 5 pm.

The results of the intersection traffic surveys are presented in Figure 4.3.

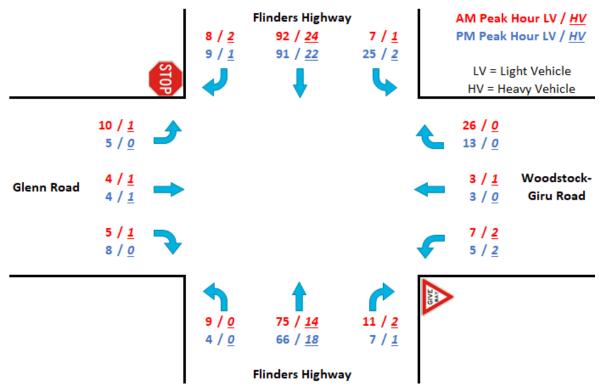


Figure 4.3 2025 surveyed peak hourly traffic volumes

At Flinders Highway/Woodstock-Giru/Glenn Road intersection, there is no definite traffic pattern where the majority of the traffic uses the highway and minor traffic on the side roads. The recorded heavy vehicle movements on Flinders Highway were significant which varied between 18% and 27%, depending on the peak hour and direction.

The intersection count data are presented in Attachment C.

4.4 Level crossing

Glenn Road crosses the Mt Isa Rail Line via a signal-controlled level crossing (Photograph 4.4). The closest train stop is Woodstock, located approximately 250 m south of the level crossing. In the future, the station will be repositioned to approximately 120 m south of the new level crossing (Section 5.8). For westbound traffic on Glenn Road, there is approximately 250 m of road available for vehicle queuing when the level crossing is occupied by a passing train. Future upgrades propose aligning Glenn Road with Jones Road (Section 5.8). In that configuration, the available queuing distance would reduce to approximately 180 m.

The Mt Isa Rail Line currently carries frequent freight train services. A public timetable for these services is not available. Queensland Rail operates *The Inlander*, a passenger train running between Townsville and Mount Isa, twice weekly with two return trips each week. The timetable is provided in Table 4.5 and Table 4.6. Woodstock is located between Townsville and Charters Towers. Although the commuter trains do not stop at Woodstock, it can be estimated using Table 4.7 that Woodstock is approximately one hour from Townsville by train.

During the most recent site visit on 13 to 14 May 2025, two freight trains traversed the level crossing within the total survey periods (two hours in the AM peak and two hours in the PM peak). One train passed during the AM period and one during the PM period, both heading northbound. Each freight train took approximately one minute to clear the level crossing, and no queuing was observed on Glenn Road during these times. Data gathered for the Townsville Energy and Chemicals Hub ¹project, identified that each freight train took approximately three minutes to clear the level crossing. Therefore, as a conservative approach, the longer train is considered for the analysis which provides the queuing for the worst-case scenario.

A potential delay factor for traffic is the warning time for road users prior to the arrival of a train at the level crossings. Queensland Rail does not publish the advance warning time for level crossings that have flashing lights. However, the Australian Rail Track Corporation (ARTC) standard for single track railway level crossings using flashing lights and warning bells is 25 seconds (s) advance warning time (ARTC 2022). For the purpose of this TIA, 25 seconds of advance warning time is assumed.

There is also the small allowance once the train has cleared the level crossing for the deactivation of the warning systems. For this assessment, a nominal time of 3 seconds is adopted. With the total warning, passing and clearance time, the typical delay time for a freight train at an 'active' type level crossing is approximately 208 seconds which equates to 180 seconds (3 minutes) stop + 25 seconds warning on approach to the train + 3 seconds of waiting time after the departure of the train.

The train travel time information is provided in the following tables.

Table 4.5 The Inlander (Train number 3M34) – Townsville to Mount Isa train timetable

Station	Wednesday, Saturday
Townsville depart	12:40 pm
Charter Towers arrive	3:30 pm
Charter Towers depart	3:40 pm

Source: Queensland rail travel

Table 4.6 The Inlander (Train number 3231) – Mount Isa to Townsville train timetable

Station	Friday, Monday
Charter Tower arrive	6:55 am
Charter Towers depart	7:05 am
Townsville arrive	10:10 am

Source: Queensland rail travel

Table 4.7 shows that between Townsville and Woodstock; the estimated freight train travel time is approximately 60 to 70 minutes.

Source: EMM Traffic Impact Assessment report dated 8 November 2021 (Section 5.4)

 Table 4.7
 Sectional running times for the freight trains

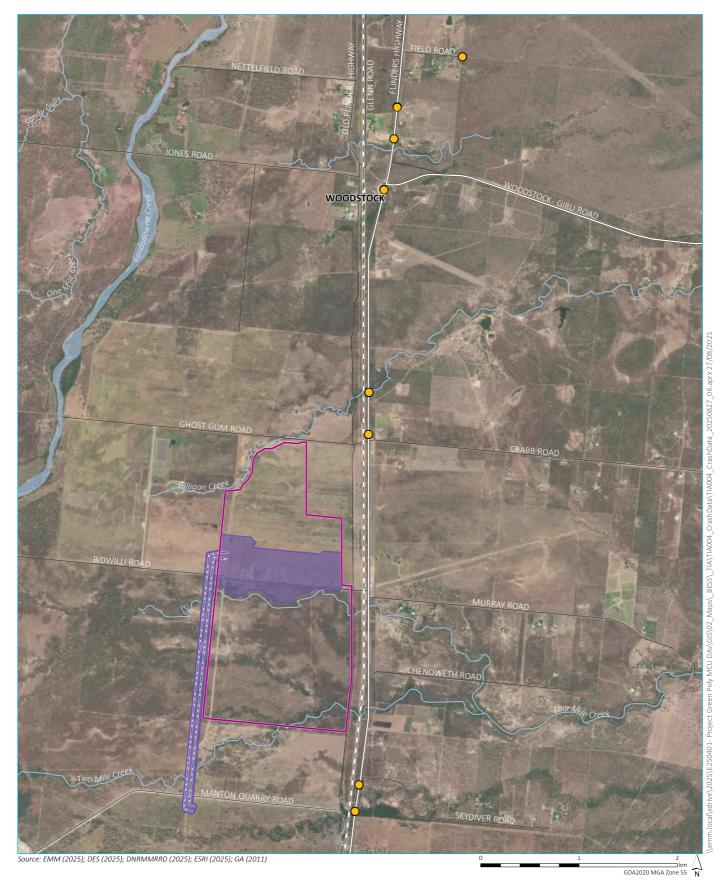
Section	To (minutes)	From (minutes)
Townsville Jetty > Stuart	28	24
Stuart > Antill Plains	18	15
Antill Plains > Woodstock	22	18

Source: Queensland rail travel

Photograph 4.4 Glenn Road level crossing (taken on 14 May 2025)

Photograph 4.5 Freight train traversing the level crossing looking from Jones Road (taken on 10 March 2021)

4.5 Crash data analysis


The Queensland Government Open Data portal provides road crash locations and characteristics of crashes within Queensland, for all reported road traffic crashes 1 January 2001 to 30 June 2024.

The road crash data from 1 July 2024 to 2025 was not available at the time of preparation of this report. The road crash locations within 6 km of the premises from 2019 to June 2024 are shown in Figure 4.4 and further detailed in Table 4.8.

Queensland Data Portal records various types of crash severity. However, all of the crash data within 6 km of the premises between 2019 and June 2024 resulted in hospitalisation. There was a total of eight crashes (within 6 km) on Flinders Highway between 2019 and June 2024 with eight hospitalisations.

A motorcycle was involved in two of the crashes while a truck was involved in four of the crashes. Three hospitalisations occurred by single vehicle crash where the vehicle veered off road and eventually hit an object. As this section of the Flinders Highway is a straight section of road, the crashes likely to be due to factors such as driver fatigue. Two crashes occurred in Field Road and south of Flinders Highway/Woodstock-Giru Road/Glenn Road intersection respectively are not along the haulage route of the Development.

Within 1 km of the development site, there are no recorded crash on local roads. Given there have been a total of eight crashes over the 4.5-year period, it is considered that crash incidents are infrequent and minor. Furthermore, the crash type does not indicate any road safety deficiency which requires immediate attention. As such, based on the crash statistics, there is not major road safety issues at the vicinity of the development site.

KEY

■ Northern Quartz Campus

Package 1- Premises

--- Package 1- Transmission line

Crash severity

Hospitalisation

Existing environment

– – Rail line

— Major road

— Minor road

— Named watercourse

Named waterbody

Crash data between 2019 and June 2024 within 6 km of the development site

Northern Quartz Campus Package 1- BESS, transmission line and substation Traffic Impact Assessment Figure 4.4

Table 4.8 Crash history between 2019 and June 2024 within 6 km of the development site

Crash year	Crash severity	Crash details	Street	Speed limit	Lighting condition	Car involved	Motorcycle involved	Truck involved
2019	Hospitalised	Off path-straight: hit object	Field Road	0-50 km/h	Dawn/Dusk	-	1	-
2020	Hospitalised	Vehicles opposite approach: head on	Flinders Highway	100- 110 km/h	Daylight	1	-	1
	Hospitalised	Off path-straight: right off carriageway hit object	Flinders Highway	100- 110 km/h	Daylight	1	-	-
2022	Hospitalised	Hit animal	Flinders Highway	100- 110 km/h	Darkness	-	1	-
2023	Hospitalised	Off path-straight: right off carriageway hit object	Flinders Highway	100- 110 km/h	Daylight	1	-	-
	Hospitalised	Vehicles same direction: rear-end	Flinders Highway	100- 110 km/h	Daylight	2	-	1
	Hospitalised	Hit animal	Flinders Highway	100- 110 km/h	Darkness	-	-	1
2024	Hospitalised	Vehicles opposite approach: head on	Flinders Highway	100- 110 km/h	Daylight	1	-	1

4.6 Public transport

4.6.1 Buses

There are no bus stops in the vicinity of the site, which reflects the general rural nature of the site location.

4.6.2 School bus

School bus service (Route 283) is provided by Sunbus Townsville. It operates from Flinders Highway near Plant Hill Road to Heatley Secondary College in Heatley along Flinders Highway. The school bus operates from 7 to 9 am and from 3 to 4:40 pm, passing through Flinders Highway/Woodstock-Giru Road/Glenn Road intersection at around 7:16 am and 4:18 pm according to TransLink (2025).

4.6.3 Trains

Woodstock Station is a heritage-listed former railway station that is 4.5 km north of the site. There are no operational/ public train stations in the vicinity of the site.

4.7 Active transport

TCC publishes an active travel booklet within Townsville. However, it does not extend beyond the city and does not reflect the rural nature of the site.

There is a cycling lane on the western side of Flinders Highway and on the northern side of Glenn Road, at the Flinders Highway/Woodstock-Giru Road/Glenn Road intersection. The cycling lane does not extend beyond the intersection. This bicycle lane improves cycling safety at this intersection. Photograph 4.6 presents the cycling lane on Glenn Road and Flinders Highway respectively.

Photograph 4.6 A cycling lane on Flinders Highway looking north from Glenns Road (taken on 14 May 2025)

4.8 Parking

There is no street parking available in the vicinity of the premises on Flinders Highway, Glenn Road, Jones Road or Bidwilli Road.

5 Traffic generation

This section discusses the construction, operational activities and the resulted traffic generation related to the development as discussed in Section 1.2.

5.1 Baseline traffic volumes

Peak construction activities with the highest number of full-time equivalent (FTE) workers are anticipated to commence in month 11, as shown on Figure 5.1, which is expected to be May 2027. Therefore, 2027 has been adopted for this assessment. Baseline traffic volumes for 2027 have been calculated using 2.42% and 2.17% per annum linear growth rate in the AM and PM peak hour respectively and the data captured as part of this assessment (Figure 4.3). The annual linear growth rates were provided as per the Townsville Aimsun Integrated Model (TAIM) by TCC (Attachment A). These traffic volumes have been used in subsequent analysis in Sections 5 and 6.

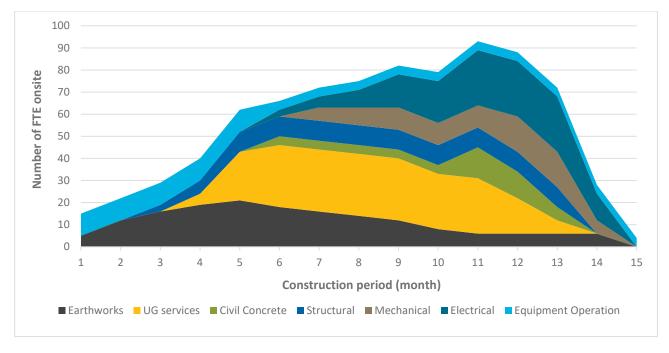


Figure 5.1 Number of FTE onsite during construction period

Based on the annual growth, the estimated 2027 baseline traffic volumes are presented in Figure 5.2.

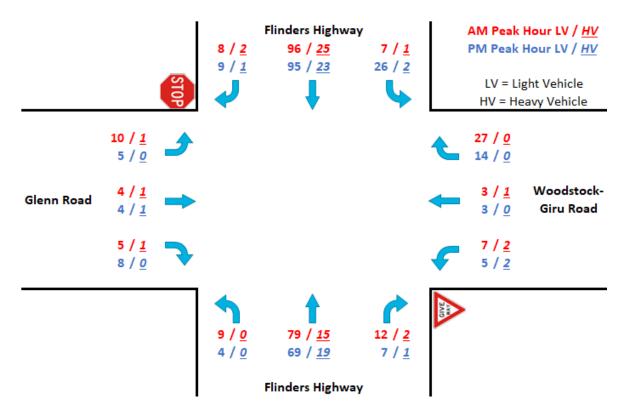


Figure 5.2 2027 baseline peak hourly traffic volumes

5.2 Trip distribution

All construction traffic will access the development site through Bidwilli Road to/from the north via the intersection of Flinders Highway/Woodstock-Giru Road/Glenn Road, realigned Jones Road and upgraded No Name road.

5.3 Construction stage

During the initial 24 to 36-month period, the project will comprise of primarily of site establishment works and Stage 1 and Stage 2 of the BESS. This period will involve the majority of the site establishment earthworks, as well as most of the cabling works. Stages 1 and 2 of the BESS will deliver up to 520 MW of capacity. In addition, the NQC Substation will be constructed with two transformers, and transmission infrastructure will be installed to connect to the Calcium substation via a single tower double circuit, comprising approximately 12 towers.

Stage 3 of the BESS will add further capacity, up to 260 MW. This stage will also include the installation of an additional transformer and another set of transmission towers, consisting of 12 structures, to support the expanded system.

It is estimated that construction stage will occur over a minimum period of 18 months, commencing in Q4 2026. Most construction works, including trenching and deliveries, will be undertaken during standard construction hours as per TCC Planning scheme:

- Monday to Saturday, 6:30 am 6:30 pm
- No work on Sundays or Public Holidays.

Exceptions to these hours may be required on limited occasions. TCC and surrounding landholders will be notified of any work outside of these hours. Once constructed, the development will operate 24 hours per day, 7 days per week, 365 days per year (24/7).

5.3.1 Light vehicles

Peak construction activities with the highest number of FTE workers are expected to commence in month 11 (Figure 5.1). A workforce of approximately 93 personnel will be required on-site during the peak construction period. They will be driving directly to the development site from Townsville. This equates to 93 light vehicle movements during the peak hours (AM inbound and PM outbound).

The light vehicle assumptions provided are considered highly conservative as it is likely personnel will arrive and depart the site outside of the AM and PM network peak hours, given the proposed construction hours.

5.3.2 Heavy vehicles

Construction vehicle movements are based on the following assumptions:

- traffic movements associated with construction personnel (refer to Figure 5.1)
- traffic movements associated with transport of site infrastructure.

Assumptions associated with transport of site infrastructure include:

- 1,170 BESS containers
- 234 inverters
- 3 transformers
- transmission infrastructure including powerlines and towers.

All equipment will be transported by 19-m-long semi-trailers. The total number of HV movements are based on:

- 2 BESS (2,438 x 6,058 x 2,896 mm) can be accommodated on one 13.7-m-long truck bed
- 4 inverters (2,438 x 3,000 mm) can be accommodated on one 13.7-m-long truck bed
- 1 transformer (approx. 2,400 x 6,000 x 2,800 mm) proposed to be accommodated on a specialist 14x8 960 series platform trailer (or similar)
- steel components for the transmission towers and associated powerlines components are to be transported on one 13.7-m-long truck bed.

This correlates to a total of 627 trips for the 15-month construction period. For the purpose of the assessment, it is assumed that HV movements carrying peak construction will occur within three months, from month 5 when electrical construction commences (Figure 5.1). Therefore this 3-month period is targeted to reflect the worst-case scenario. As such, it is estimated that with a maximum of 10 HV trips per day, 24 working days per month will deliver these materials over a 3-month period.

On this basis, there will be 10 daily HV trips during the peak construction period. This equates to total 20 daily HV movements. For the purpose of the traffic assessment, it is assumed that 50% of the daily HV trips will occur during the AM and PM peak hours with an equal inbound and outbound split.

5.3.3 Total trip generation

Based on the above, the peak hourly movements anticipated in 2027 are shown in Table 5.1.

Table 5.1 Peak hour traffic generation during 2027

Vehicle type	AM inbound movements	AM outbound movements	PM inbound movements	PM outbound movements	Total movements during the AM and PM peaks
Light	93	-	-	93	186
Heavy	5	5	5	5	20
Total	98	5	5	98	206

Note: Given 100% will be from the north e.g. Townsville, inbound refers to southbound movements along Flinders Highway, while outbound refers to northbound movements along Flinders Highway.

The peak hour construction traffic volumes for 2027 are shown in Figure 5.3.

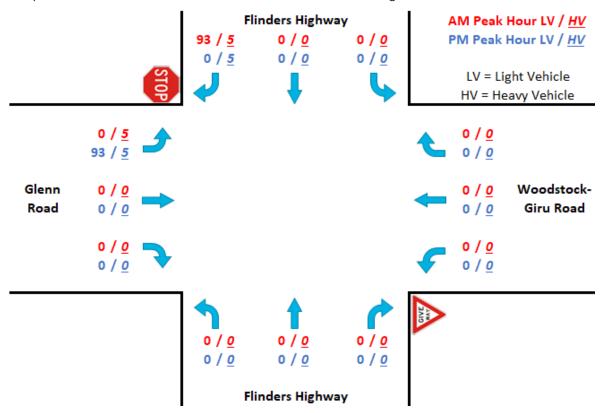


Figure 5.3 2027 peak hourly construction traffic volumes

The peak hour construction traffic volumes have been added to the 2027 baseline traffic volumes and is shown in Figure 5.4.

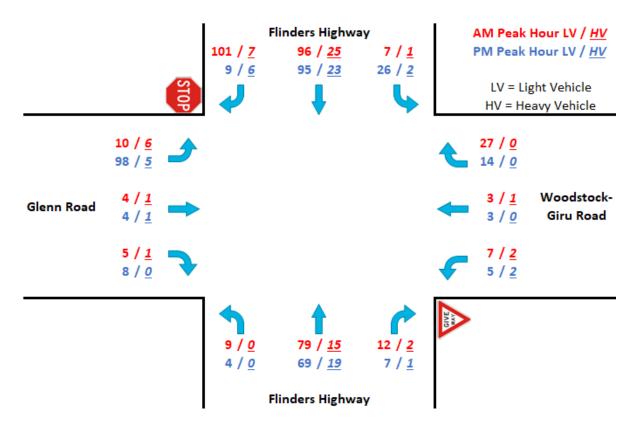


Figure 5.4 2027 peak hourly baseline + construction traffic volumes

5.4 Operational traffic

The development is proposed to operate 24/7. It is expected that the operation of the BESS will require around one to two fulltime workers per week, as well as additional contractors for regular and ad-hoc maintenance and repairs for the 20-year operational life of the development.

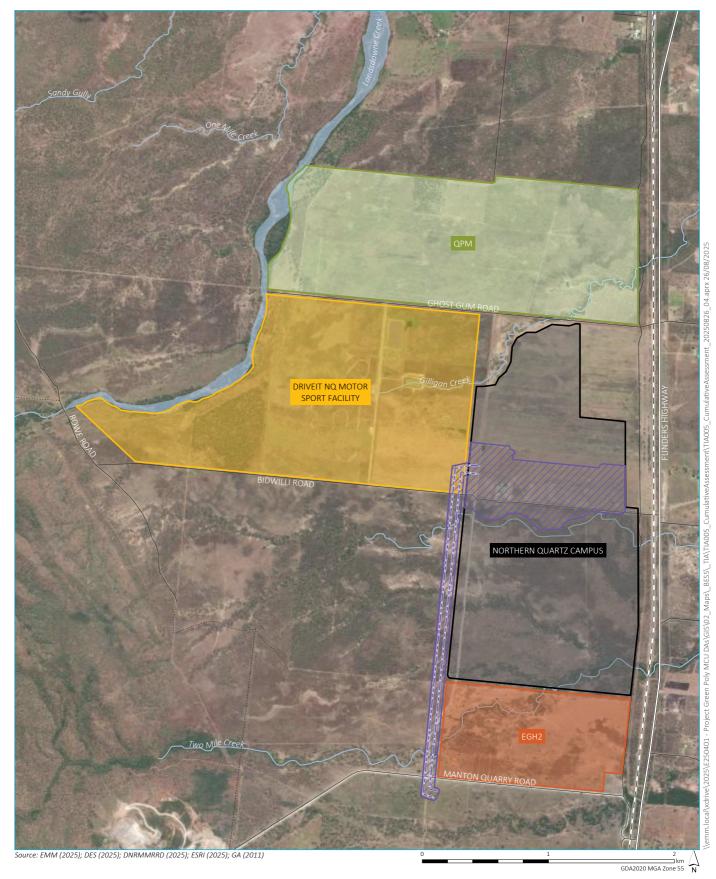
It is estimated that the operational traffic will be significantly lower than construction traffic and hence operational traffic impacts have not been considered as part of this TIA.

The swept path analysis that has been completed by Aurecon is provided as Attachment F.

5.5 Cumulative traffic

5.5.1 Neighbouring developments in LEIP

A cumulative assessment has been undertaken to assess the cumulative traffic of the development and three other developments proposed at LEIP:


- 1. Queensland Pacific Metals Townsville Energy Chemicals Hub Project (QPM)
- 2. Drive IT NQ Motor Sport Facility (Drive IT)
- 3. Edify Green Hydrogen Project and Hub (EGH2).

The locations of all four developments are shown in Figure 5.5.

These projects are addressed in a higher level of detail primarily due to:

- their proximity to the development and similar use of the primary access route, Flinders Highway, for both light and heavy vehicles
- status in the development approval process (i.e. an EIS has been submitted, and a TIA is available).

Therefore, there is some potential for these projects to contribute towards cumulative traffic impacts on Flinders Highway. It is emphasised that there is a high level of uncertainty regarding the timing for construction and operation of these projects.

KEY

■ Northern Quartz Campus

Package 1 - Premises

--- Package 1 - Transmission line

Nearby project location

DriveIT NQ Motor Sport Facility

QPM

EGH2

Existing environment

– – Rail line

— Major road

— Minor road

····· Vehicular track

Named watercourseNamed waterbody

Cumulative assessment development location

Northern Quartz Campus Package 1 - BESS, transmission line and substation Traffic Impact Assessment Figure 5.5

i QPM

QPM proposes to develop a mineral refining facility adjacent to the development. Based on the approved documentation (²EMM 2021), the construction stage of this project is expected to finish by 2023. However, construction has not commenced, and the project website has no updated information. Due to the uncertainty surrounding construction timeframes, the constructional phase of project has been excluded from the cumulative traffic assessment. Instead, the operational phase is included in the cumulative traffic assessment due to its longer duration.

The proposed operational route of QPM is the same as the proposed route of the subject development. Most of the light and heavy vehicles will be travelling to/from Townsville via Flinders Highway/Woodstock-Giru Road/Glenn Road intersection.

The peak hourly operational traffic volume of QPM at the Flinders Highway/Woodstock-Giru Road/Glenn Road intersection is showed in Figure 5.6.

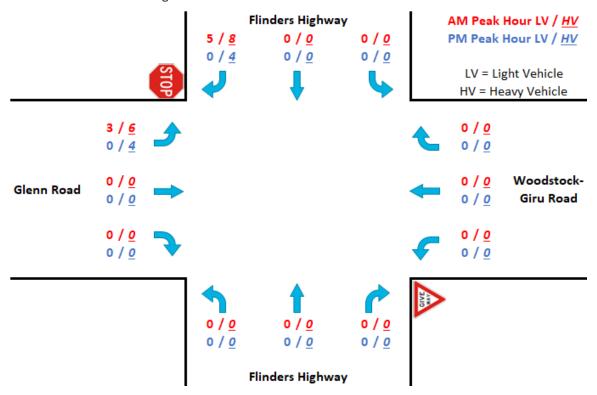


Figure 5.6 Estimated peak hourly traffic generation by QPM for the cumulative assessment

ii Drive IT

Drive IT is a motor sport facility under operational stage adjacent to the project. In a letter dated 8 February 2019, Queensland State Development, Manufacturing, Infrastructure and Planning provided the estimated operational traffic generation and details. The letter is provided in Attachment A.

The largest motor sport events generate the highest peak hour traffic movements by the visitors which are between 883 and 1,177 daily light vehicle trips on weekdays and weekends. These larger events occur twice per year. As these events are infrequent, these events are excluded from the cumulative traffic impact.

² EMM Traffic Impact Assessment dated 8 November 2021

For the purpose of this assessment, traffic volumes for events with higher frequencies (e.g. 40 events per calendar year) is adopted. The document states that there are 250 inbound and 250 outbound light vehicle movements within an hour for event start and event finish times respectively. These peak hourly traffic movements are generated by the motorsport events and occur regularly on both weekdays and weekends.

As the Drive IT facility operates between 8 am and 12 am (midnight), there is a possibility that their traffic generation may coincide with the road network peak hours. As the events will occur for more than one hour period, it is assumed the inbound and outbound vehicle movements will not occur within the same hour.

The proposed route of Drive IT is the same as the proposed route of the development. Most light vehicles will be travelling from Townsville via Flinders Highway/Woodstock-Giru Road/Glenn Road, Jones Road and unnamed road.

It should be noted that during the EMM peak hour traffic surveys, there was no Drive IT event. As such, Drive IT's traffic generation has been added in the cumulative assessment which provides the traffic impact at the road network for the worst-case scenario.

The peak hourly operational traffic volume of Drive IT at the Flinders Highway/Woodstock-Giru Road/Glenn Road intersection is showed in Figure 5.7.

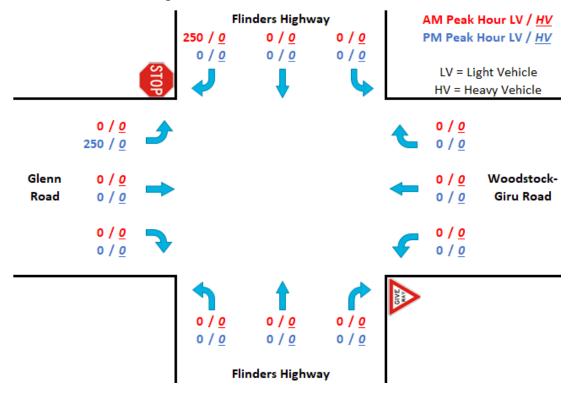


Figure 5.7 Estimated peak hourly traffic generation by Drive IT for the cumulative assessment

iii EGH2

EGH2 proposes to develop a multi-stage green hydrogen production plant with solar PV renewable energy generation and a BESS (MCU21/0040). It is located directly south of the development. According to the approved document (Northern Consulting Engineers 2021), the bulk delivery period of the construction stage is expected to finish in 6 weeks after the approval in 2021. However, construction has not commenced, and the project website has no updated information. Due to the uncertainty and short period of the construction timeframes, the operational phase of the project is included in the cumulative traffic assessment, instead of the constructional phase.

The propose operational route of EGH2 is similar to that of the development. Most light and heavy vehicles will be travelling from Townsville via Flinders Higher/Manton Quarry Road intersection by passing through the Flinders Highway/Woodstock-Giru Road/Glenn Road intersection.

The peak hourly operational traffic volume of EGH2 at the Flinders Highway/Woodstock-Giru Road/Glenn Road intersection is showed on Figure 5.8.

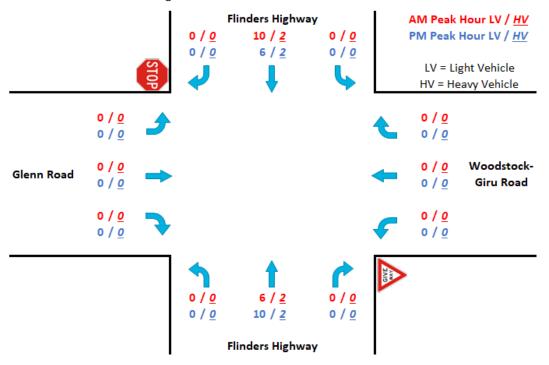


Figure 5.8 Estimated peak hourly traffic generation by EGH2 for the cumulative assessment

5.5.2 2027 baseline traffic with construction and cumulative traffic

The peak hourly baseline with construction and cumulative traffic volumes are provided in Figure 5.9.

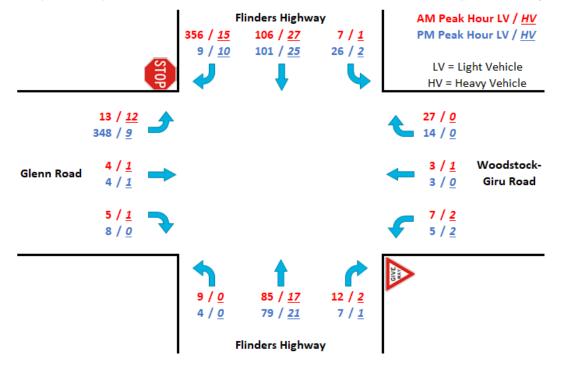


Figure 5.9 2027 peak hourly baseline + construction + cumulative traffic volumes

5.6 Vehicle type

The longest heavy vehicles that are proposed to access the development site are expected to be 19-m-long semi-trucks.

5.7 Car parking

A car parking area will be accommodated within the laydown area, servicing 89 car parks for the construction workforce and nine car parks for operations. Car parking will be designed in accordance with the requirements of the transport impact, access and parking code within the Townsville City Plan 2014 and Australian Standards appropriate to the proposed heavy industry land use.

5.8 Road upgrade work (TCC proposed)

TCC is the landholder and developer of the LEIP. Discussions between Solquartz and TCC are ongoing to ensure all necessary road upgrades are in place before commencement of the construction of this BESS. For the purposes of this assessment, it is assumed that the upgrade will be implemented in the future.

A 130 m long realignment of Glenn Road is proposed as an extension to Jones Road which would provide a more direct connection between Jones Road and Flinders Highway. The proposed realignment will include decommissioning the existing railway crossing and part of Glenn Road. The new/relocated railway crossing will have adequate sight distance. Furthermore, No-Name Road is proposed to be realigned and extended from Jones Road to Bidwilli Road and development site access. This provides a more direct connection between the development site and Jones Road. The new road and intersection will be constructed in accordance with relevant Austroads standards.

6 Impact assessment

6.1 Intersection performance

The Flinders Highway/Woodstock-Giru Road/Glenn Road intersection have been modelled with the SIDRA Intersection 10 software, a micro-analytical tool for individual intersections and linked intersection-network modelling. The modelling is based on the baseline traffic volumes detailed in Section 5.1, construction traffic volumes in Section 5.3 and cumulative traffic volumes in Section 5.5. SIDRA provides the following performance indicators:

- Degree of saturation (DOS) the total usage of the intersection expressed as a factor of 1 with 1 representing 100% use/saturation (e.g. 0.8 = 80% saturation). In practice, the target degrees of saturation of 0.90 for signals, 0.85 for roundabouts and 0.80 for unsignalised intersections are generally agreed to. These are usually called 'practical degrees of saturation'.
- Average delay (DEL) for signalised intersections and roundabouts, this is the average delay in seconds
 encountered by all vehicles passing through the intersection. For priority-controlled intersections, this is
 the average delay encountered by vehicles on the worst approach and turning movement. It is often
 important to review the average delay of each approach as a side road could have a long delay time, while
 the large free flowing major traffic will provide an overall low average delay.
- Level of service (LOS) this is a categorisation of average delay, intended for simple reference.
- 95% queue lengths (Q95) is defined to be the queue length in metres that has only a 5% probability of being exceeded during the analysed time period. It transforms the average delay into measurable distance units.

The LOS is a good indicator of overall performance for individual intersections, with the corresponding average delay for each level summarised in Table 6.1.

Table 6.1 Intersection LOS standards

Level of service	Average delay (seconds per vehicle)
А	<14
В	15 to 28
С	29 to 42
D	43 to 56
E	57 to 70
F	>71

Source: TfNSW Guide to Transport Impact Assessment (2024)

SIDRA intersection modelling has been conducted for the following scenarios for year 2027:

- Baseline scenario: This scenario includes survey traffic volumes only and without any proposed construction traffic volumes.
- Baseline and construction scenario: This scenario includes the survey traffic volumes combined with proposed construction traffic volumes.

• Baseline, construction and cumulative scenario: This scenario includes the survey traffic volumes combined with proposed construction traffic volumes and cumulative traffic volumes.

The SIDRA results for the Flinders Highway/Woodstock-Giru Road/Glenn Road intersection are presented in Table 6.2. The SIDRA movement summaries and intersection layout are presented in Attachment D.

Table 6.2 SIDRA modelling result for Flinders Highway/Woodstock-Giru Road/Glenn Road intersection

Control: Priority AM Peak controlled (Give-Way & Stop)			PM Peak								
20	27 Scenario	Intersection volume	DEL (s)	LOS	DOS	Maximum queue (m) (approach)	Intersection volume	DEL (s)	LOS	DOS	Maximum queue (m) (approach)
1.	Baseline (without construction)	337	15.9	В	0.076	1.8 (east)	316	15.2	В	0.072	0.9 (east)
2.	Baseline and BESS construction	455	18.6	В	0.091	2.8 (north)	424	15.4	В	0.072	0.8 (west)
3.	Baseline, BESS construction and cumulative	753	33.9	С	0.313	11.5 (north)	717	15.9	В	0.206	1.8 (east)

Key Findings:

- In both AM and PM, the intersection performs satisfactorily within capacity with LOS B and DOS <0.1 for baseline and baseline with construction scenarios. The intersection has spare capacity to accommodate additional development traffic.
- With the construction traffic, the LOS will remain the same with slightly increased capacity.
- With the cumulative traffic, the LOS in the AM peak will deteriorate to C. This is considered acceptable given the BESS construction is temporary and most of the impacts will occur due to the Drive IT development. Furthermore, the queue lengths will remain within an acceptable level with no impact to the through movements on Flinders Highway.

6.2 Turn warrant assessment

Intersection operations are assessed from a combination of the peak hourly through and turning traffic movements that occur at Flinders Highway/Woodstock-Giru Road/Glenn Road intersection. This determines the need for additional intersection turning lanes (e.g. basic, auxiliary lane and channelised) in accordance with the current intersection design standards (Austroads 2023) *Guide to Road Design Part 4a, Unsignalised and Signalised Intersections* (Figure 6.1), where:

• Curve 1 (red line) represents the boundary between a basic right turn (BAR) and a channelised short right turn (CHR(s)) treatment and between a basic left turn (BAL) and an auxiliary short left turn (AUL(s)) treatment.

Curve 2 (blue line) represents the boundary between a CHR(s) and a full length CHR treatment and
between an AUL(s) and a full length AUL or channelised left turn (CHL) treatment. The choice of CHL over
an AUL will depend on factors such as the need to change the give way rule in favour of other manoeuvres
at the intersection and the need to define more appropriately the driving path by reducing the area of
bitumen surfacing.

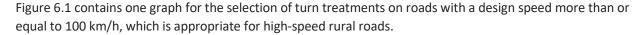


Figure 6.1 Austroads warrant design charts for high-speed rural intersection turning lanes

The Austroads guide recommends that intersections are designed for a travel speed 10 km/h greater than the posted speed limit on roads with a speed limit greater than 60 km/h. As Flinders Highway near Glenn Road and Woodstock-Giru Road have a posted speed limit of 110 km/h, their intersection should be designed for 120 km/h, which is 10 km/h above the posted speed limit. Hence, Figure 6.1 is appropriate for determining the turn treatment.

The warrant for turn treatments is assessed using the 2027 baseline + construction traffic volumes + cumulative traffic volumes (Figure 5.9) (not including the proposed Jones Road upgrade by TCC), representing the worse-case scenario.

At the vicinity of the site, the only impacted intersection that requires a turn warrant assessment is Flinders Highway/Woodstock-Giru Road/Glenn Road intersection. Only the west approach of the intersection (Flinders Highway/Glenn Road intersection) is assessed as no development-related traffic uses the east approach (Flinders Highway/Woodstock-Giru Road intersection) (Figure 5.3).

6.2.1 Left turn treatment onto west approach (Glenn Road)

Non-development related light and heavy vehicles can travel from the south on Flinders Highway. Hence, this left turn assessment has no material impact by the development traffic. The left turn treatment warrant design chart is shown in Figure 6.2.

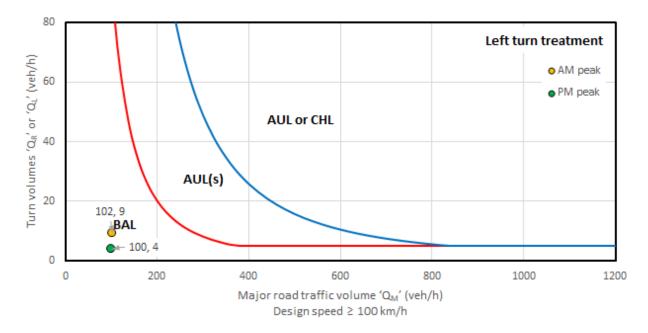


Figure 6.2 Warrant design chart for left turning lane requirement on the west approach

For the 9 and 4 turn volumes from Flinders Highway to Glenn Road during the AM and PM peak hour, a basic left turn (BAL) treatment will be required. However, this intersection already provides a dedicated left turn bay from Flinders Highway to Glenn Road (Figure 4.2). Hence, no additional road upgrade is necessary.

6.2.2 Right turn treatment onto west approach (Glenn Road)

All development related light and heavy vehicles are assumed to be coming from the north on Flinders Highway. Hence, assessment is required for a possible right turn bay from Flinders Highway. The right turn treatment warrant design chart is shown in Figure 6.3.

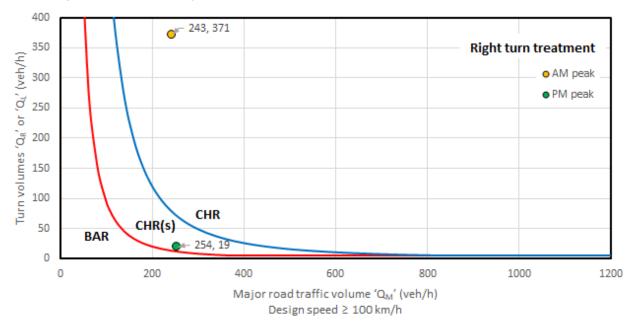


Figure 6.3 Warrant design chart for right turning lane requirement on the west approach

As shown in Figure 6.3, for 371 right-turning vehicles and 243 major road vehicles on Flinders Highway from the north during the AM peak hour, a channelised right turn (CHR) will be required. However, a CHR is already provided at the west approach of this intersection. Hence, no additional road upgrade is necessary.

6.3 Road safety assessment

Flinders Highway near Glenn Road and Woodstock-Giru Road has a sign posted speed limit of 110 km/h. In accordance with *Austroads Guide to Road Design Part 4A (Unsignalised and Signalised Intersections)* (Austroads 2023) Table 3.2, the design speed is 120 km/h. The minimum safe intersection sight distance (SISD) required for a general 2.5 second driver's reaction time is 341 m.

6.3.1 Flinders Highway/Woodstock-Giru Road/Glenn Road intersection

The sight distances on Flinders Highway from Glenn Road have been estimated based on the line of sight and observation (Figure 6.4).

Sight distance to the left (~483 m)

Sight distance to the right (~423 m)

Source: site visit on 14 May 2025 and Queensland Globe

Figure 6.4 Sight distance to the left and right from Glenn Road to Flinders Highway

The sight distance from Glenn Road to the left (483 m) and right (423 m) along Flinders Highway meet the minimum requirement (341 m) for the design speed of 120 km/h stipulated in the *Austroads Guide to Road Design Part 4A (Unsignalised and Signalised Intersections)* (Austroads 2023).

6.4 Impact on public and active transport infrastructure

The development is unlikely to have any significant impact on the public and active transport infrastructure.

6.5 Access to properties

This development will have no impact to any adjoining properties.

6.6 Level crossing assessment

As outlined in Section 4.4, train movements through the level crossing at Woodstock typically include two freight trains during the AM peak and none during the PM peak under the worst-case conditions. However, to adopt a conservative approach, this assessment assumes a worst-case scenario of two northbound freight trains in the AM peak, as outlined at the EMM report for Townsville Energy and Chemicals Hub traffic report, and one northbound freight train in the PM peak, as observed during the site visit from 13 to 14 May 2025.

The total time the level crossing is assumed to be closed to vehicular traffic is estimated at 208 seconds. This includes 180 seconds for a train to pass through Glenn Road, an additional 25 seconds of advance warning time and 3 seconds of deactivation time.

By assuming that all vehicles entering the realigned Jones Road are heading westbound and all vehicles exiting via Jones Road are heading eastbound at the level crossing, the peak hour traffic volumes in Figure 5.2, Figure 5.4, and Figure 5.9 have been rearranged to represent the peak hour traffic scenario at the level crossing. The revised peak hour traffic volumes are shown in Figure 6.5, Figure 6.6, and Figure 6.7.

A queueing assessment has been conducted using SIDRA to obtain the 95th percentile queue length (m) for the realigned Jones Road. The model was developed as a signalised intersection, with two trains crossing in the AM peak hour and one train crossing in the PM peak hour, each assumed to block traffic on Jones Road for 208 seconds in every 30-minute interval. The queue lengths for Jones Road at the level crossing are presented in Table 6.3. The SIDRA results are attached in Attachment E.

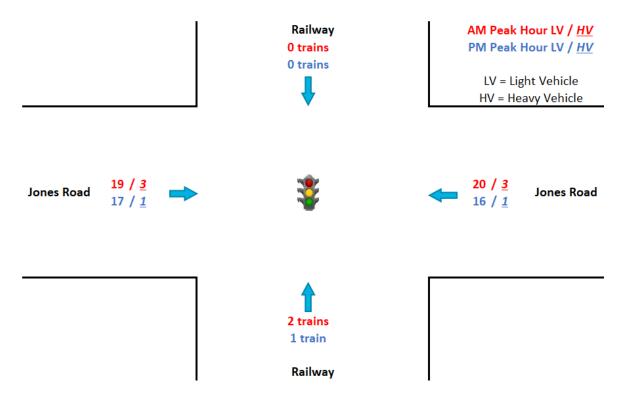


Figure 6.5 2027 baseline traffic volumes at the realigned Jones Road level crossing

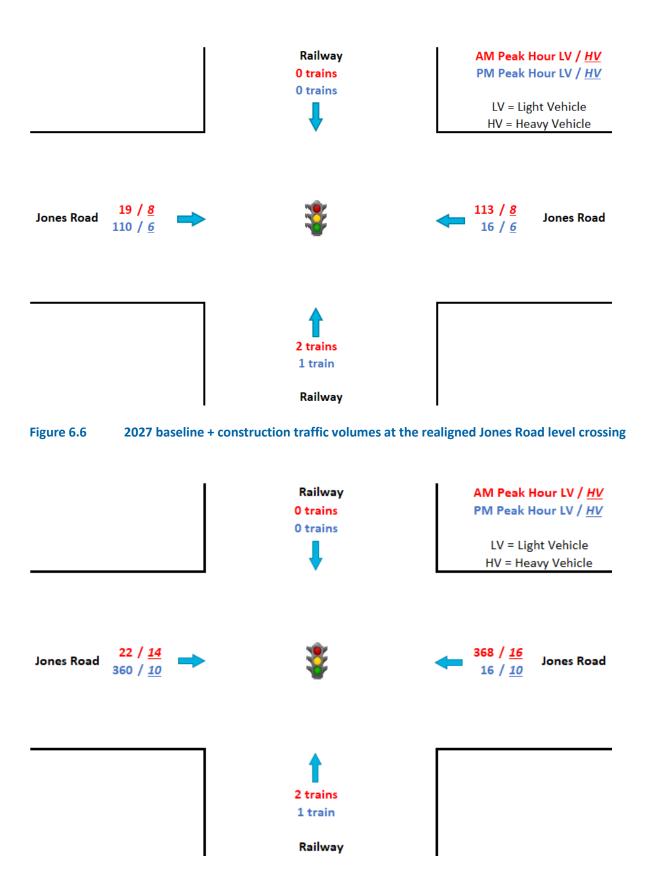


Figure 6.7 2027 baseline + construction + cumulative traffic volumes at the realigned Jones Road level crossing

Table 6.3 Queue length on Jones Road at the level crossing

Scenario	Peak hour	East approach		West appro	ach	95 th percentile queue length (m)		
		Light vehicles	Heavy vehicles	Light vehicles	Heavy vehicles	East approach	West approach	
2027 baseline	AM	20	3	19	3	18.7	18.0	
	PM	16	1	17	1	13.0	13.7	
2027 baseline + BESS	AM	113	8	19	8	99.3	24.9	
construction	PM	16	6	110	6	19.9	93.7	
2027 baseline + BESS	AM	368	16	22	14	366.9	35.7	
construction + cumulative	PM	16	10	360	10	19.1	344.5	

As shown in Table 6.3, on Jones Road at the east approach, the increase in queue length between the 2027 baseline scenario and the 2027 baseline + BESS construction scenario is 99.3 m. The traffic remains within the estimated future allowable queue length of 180 m without impacting Flinders Highway. However, the increase in queue length under the 2027 baseline + BESS construction + cumulative scenario is 366.9 m, exceeding the allowable limit. This exceedance is attributed to the cumulative traffic from the Drive IT motor sport facility which is currently operational.

For the west approach, the queue length increases between the 2027 baseline and the 2027 baseline + construction scenario is 93.7 m, which remains well within the estimated allowable queue length of 420 m. The west approach can also accommodate traffic under the 2027 baseline + BESS construction + cumulative scenario, with the 344.5 m queue length increase remaining within the allowable limit.

Based on the potential queuing on Flinders Highway, it is recommended that the inbound heavy vehicles to the site are to be restricted while the level crossing is operational.

6.7 Construction Traffic Management Plan

As port of this development approval, a Construction Traffic Management Plan (CTMP) will be prepared in consultation with TCC. The plan will include:

- the Driver's code of conduct
- identification of haulage route
- operational hours e.g. delivery times
- presence of level crossing (Refer to Section 6.6)
- presence of any school zone along the haulage route
- presence of cyclists at Flinders Highway/Gleen Road/Woodstock Giru Road intersection
- calendar timing for the two Drive IT major events, in an effort to minimise any traffic disruption it is recommended that deliveries to be ceased in during the two major Drive IT events (Refer to Section 5.5).

7 Road upgrades and mitigation measures

7.1 Schedule of road upgrades

It is assumed that all scheduled road upgrades will occur in accordance with the masterplan, including realignment of Jones Road, prior to the commencement of this development.

7.2 Construction

7.2.1 Construction traffic management plan

Subject to the assessment outcome, a construction traffic management plan (CTMP) will be prepared. An outline of the CTMP is provided below.

i Objective

The CTMP will address the safety of workers and road users within the vicinity and will aim to:

- minimise the impact of the construction vehicle traffic on the overall operation of the road network
- ensure continuous, safe and efficient movement of traffic for both the general public and construction workers
- provide a description of the construction vehicles and the volume of these construction vehicles accessing the development site
- provide a description of the proposed external routes for vehicles including the construction vehicles accessing the development site.

ii General requirements

In accordance with Queensland Government's requirements, all vehicles transporting loose materials will have the entire load covered and/or secured to prevent any large items, excess dust or dirt particles depositing onto the roadway during travel to and from the development site. All subcontractors will be inducted by the lead contractor to ensure that the procedures are met for all vehicles entering and exiting the development site. The lead contractors will monitor the roads leading to and from the development site and take all necessary steps to clean any load deposits on the road caused by development-related vehicles.

iii Access

The development site will be accessed directly from Bidwilli Road. The site access will be clearly signed and demarcated. On arrival, all vehicles, plant and equipment will be directed to remain within clearly demarcated areas.

iv Traffic control measures

A CTMP will be developed by a qualified personnel in consultation with TCC. The CTMP will include:

- a map of the primary transport route/s highlighting critical locations
- identification of local bus operations, including maps of routes/bus stops, and consultation with local bus operators

- safety initiatives for haulage through residential areas and/or school zones
- an induction process for vehicle operators and regular toolbox meetings
- a public Feedback Mechanism, complaint resolution and disciplinary procedure
- any proposed temporary measures such as Traffic Guidance Scheme
- community consultation measures for peak haulage periods.

v Pedestrian access

To provide segregation and protection for pedestrians, fencing will be provided to define all boundaries of the development site. Pedestrian activity in the locality, including along Bidwilli Road is generally minimal due to the long distance from the nearest residences and/or urban areas.

vi Road occupancy licences

Prior to the commencement of construction of the site access on Bidwilli Road, the relevant application form will be completed and lodged to TCC.

A regular liaison is required with TCC in relation to the other road upgrade works in this precinct to facilitate construction related vehicles.

vii Work site security

All access gates will be securely locked when the development site is unoccupied, or construction activities are not in progress.

viii Staff safety and induction briefings

All staff and subcontractors will be required to undergo a site induction prior to the commencement of their work on-site. The site induction will include briefings in relation to permitted transport routes for travel to and from the development site for light and heavy vehicles, the Driver's Code of Conduct, as well as standard environmental, occupational health and safety, vehicle safety and emergency safety procedures.

ix Feedback mechanism

A feedback mechanism for the development will be implemented to enable active community consultation, maintain positive communication and capture complaints from local residents. The purpose of this system will be to manage community expectations by providing timely responses to community feedback and monitoring the ongoing environmental performance of development construction.

A dedicated phone number will be established that is available 24 hours, seven days a week for community members who have enquiries or who wish to lodge feedback in relation to construction. The phone number allows community members to enquire or lodge complaints about development-related vehicles travelling on the public road network.

7.2.2 Driver's Code of Conduct

A Driver's Code of Conduct will be provided to all relevant personnel prior to their arrival at the development site. The Driver's Code of Conduct must be read and signed by all light and heavy vehicle drivers prior to operation of vehicles. This will be in addition to regular safety briefings and updates. The Driver's Code of Conduct will address all relevant site and locality road safety and traffic management measures including:

- compliance with all road rules and regulations
- approved traffic routes (e.g. 100% of the haulage route to/from the north along Flinders Highway)
- vehicle speeds
- driving to local road conditions
- driver behaviour
- courtesy to other road users
- fatigue management
- dangers of mobile phone use while driving
- checking vehicles and covering loads
- the appropriate use of compression braking
- safety procedures for accidents and breakdowns.

7.2.3 Enforcement of the prescribed haulage route

All modern trucks have GPS embedded onto them. Hence, enforcement of the haulage route will be achieved via GPS tracking.

7.2.4 Summary of mitigation measures

Construction traffic mitigation measures are outlined in Table 7.1.

 Table 7.1
 Construction traffic mitigation measures

Reference	Mitigation measure	Responsibility	Timing
T1	Site access on Bidwilli Road.	Proponent	PC
T2	Enforcement of the haulage route to/from the north.	Proponent	С
ТЗ	A detailed CTMP will be developed prior to the commencement of construction. The CTMP will be prepared and implemented in accordance with Australian Standard 1742.3. The CTMP will identify strategies to manage the impacts of development-related traffic and include a Driver's Code of Conduct.	Proponent	PC
T4	Prohibit inbound truck delivery during the operation of the level crossing on Jones Road	Transport contractor	С
T5	Prohibit any delivery during the two-yearly major event of Drive IT	Transport contractor	С

Note: PC = pre-construction; C = construction.

7.3 Operation

No material traffic impacts are expected during operations. Accordingly, no mitigation measures are proposed for operations.

7.4 Decommissioning

Decommissioning traffic will be captured in the Rehabilitation and Decommissioning Plan, which will be developed and submitted to TCC for approval at least one year prior to decommissioning. As such, no additional mitigation measures are required during the development approval stage.

E231133 | RP2 | v2-0 43

8 Conclusion

The development consists of the installation, operation, maintenance and decommissioning of a BESS, substation transmission line and associated ancillary infrastructure. Traffic generated by the development will be the highest during construction period and is expected to be negligible during operations.

Construction of the development has been estimated to occur over a minimum timeframe of approximately 18 months, and the peak construction workforce will be approximately 93 people occurring over an approximately three-month period. During construction, development-related vehicles will access the development site via Flinders Highway – realigned Jones Road – No-Name Road – Bidwilli Road. A new site access intersection will be constructed on Bidwilli Road to facilitate access to the development site.

The construction workforce will travel to/from Townsville by private vehicles. Construction vehicle movements include heavy vehicles for deliveries. During peak construction, approximately 93 light vehicle movements and 10 heavy vehicle movements are anticipated during peak hour periods.

The impact of development-related vehicles on the Flinders Highway/Woodstock-Giru Road/Glenn Road intersection has been assessed:

- SIDRA analysis shows that the intersection will remain at LOS B in all scenarios, except the AM peak hour with cumulative traffic where the intersection will operate at LOS C. However, the overall performance of the intersection will not deteriorate significantly which will trigger the intersection upgrade.
- Sight distance meets the minimum requirements.
- The intersection has dedicated right and left turn bays from Flinders Highway to Glenn Road. A turn treatment warrant assessment shows that no further intersection upgrade is warranted.

To minimise any potential traffic at Flinders Highway/Woodstock-Giru Road/Glenn Road intersection, it is recommended that:

- Heavy vehicle operation to the site is to be restricted during the two annual major events for Drive IT.
- Inbound heavy vehicles are to avoid timing while the level crossing on Jones Road is operational

A CTMP (including a Driver Code of Conduct) will be prepared prior to commencement of construction. With the implementation of the proposed road upgrades and CTMP, the development is not expected to have significant adverse impacts on other traffic or the road network in the vicinity of the development site.

References

Austroads 2020a, Guide to Traffic Management Part 3: Transport Studies and Analysis.

Austroads 2020b, Guide to Traffic Management Part 6: Intersections, Interchanges and Crossings Management.

Austroads 2021a, Guide to Road Design Part 4: Intersections and Crossings-General.

Austroads 2021b, Guide to Road Design Part 3: Geometric Design.

Austroads 2023, Guide to Road Design Part 4A: Unsignalised & Signalised Intersections.

DTMR 2018, Guide to Traffic Impact Assessment, Department of Transport and Main Roads.

EMM 2021, *Townsville Energy and Chemicals Hub – Appendix J: Traffic Technical Report*, prepared for Queensland Pacific Metals Pty Ltd by EMM Consulting Pty Ltd.

GHD 2019, Infrastructure, Traffic, Transport & Air Quality Integrated Master Plan Report, prepared for Townsville City Council by GHD Pty Ltd.

Northern Consulting Engineers 2018, Road impact assessment for the DriveIT NQ Motor Sport Facility.

Northern Consulting Engineers 2021, *Traffic impact assessment (state agency and local government) – Lansdown Green Hydrogen,* prepared for Edify Energy by Northern Consulting Engineers.

RTA 2002, Guide to Traffic Generating Developments.

Townsville City Council 2020, Townsville City Plan Part 9.3.5: Transport impact, access and parking code.

Townsville Energy and Chemicals Hub, Traffic Impact Assessment, dated 8 November 2021

TransLink 2025, *Route 283*, Department of Transport and Main Roads, accessed 03 June 2025 from https://jp.translink.com.au/plan-your-journey/timetables/bus/v/283/outbound/2025-06-05?timetableTime=0600.

Abbreviations

Abbreviation	Full name
ADT	average daily traffic
ARTC	Australian Rail Track Corporation
AUL(S)	auxiliary short left turn
BAL	basic left turn
BAR	basic right turn
BESS	battery energy storage system
CHR(S)	channelised short right turn
Council	Townsville City Council
СТМР	construction traffic management plan
DEL	average delay
DOS	degree of saturation
Drive IT	Drive IT NQ Motor Sport Facility
DTMR	Department of Transport and Main Roads
EGH2	Edify Green Hydrogen Project and Hub
EMM	EMM Consulting Pty Limited
FTE	full-time equivalent
ha	hectares
km	kilometres
kV	kilovolts
Land Act	Land Act 1994
LEIP	Lansdown Eco-Industrial Precinct
LOS	level of service
MW	megawatts
development	BESS, Substation and Transmission line
QPM	Queensland Pacific Metals Townsville Energy Chemicals Hub Project
Q95	95% queue lengths
RSNL Act	Rail Safety National Law Act 2017
SARA	State Assessment and Referral Agency
SCR	State-controlled road
TAIM	Townsville Aimsun Integrated Model
TCC	Townsville City Council
TIA	Traffic impact assessment

Abbreviation	Full name
TI Act	Transport Infrastructure Act 1994

Glossary

- **Development footprint:** The development footprint is wholly within the development area and is the maximum extent of ground disturbing works associated with the construction and operation of the development and is approximately 86.93 ha. The development footprint has been refined to avoid and minimise impacts where possible based on the outcomes of the technical assessments and stakeholder engagement. Approval is sought to disturb anywhere within the development footprint.
- Development area: The land required for the development. The development area is proposed to be located centrally on part of Lot 19 on SP321818 and part of Lot 87 on RP911426, north of Four Mile Creek and Bidwilli Road. The development includes the proposed overhead transmission line which traverses south along the western edge of the project premises and connect into the future Powerlink Calcium substation. The overhead transmission line interacts with the following road reserves and lot boundaries:

- Lot 19/SP321818

Lot 87/RP911426

Lot 30/SP321818

Lot 55/E124248

- Lot 65/E124264

- No Name Road

- Bidwilli Road

- An unnamed road reserve

Manton Quarry Road

The development area is the maximum area considered for the development based on the extent of land required for the development.

- **Site access point**: The proposed locations where all construction and operation traffic will access the development footprint. Access to the development footprint will be possible via Bidwilli Road.
- **Vehicle movement**: A vehicle movement is a single, one-way journey from one point to another, excluding the return journey. If a return journey is considered, this will be classified as another vehicle movement.

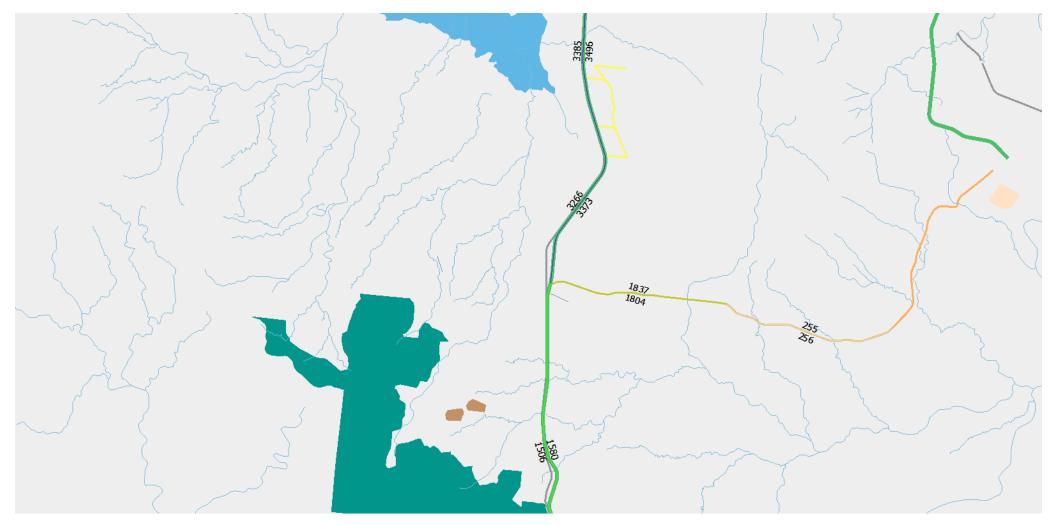
E231133 | RP2 | v2-0 48

Attachment A

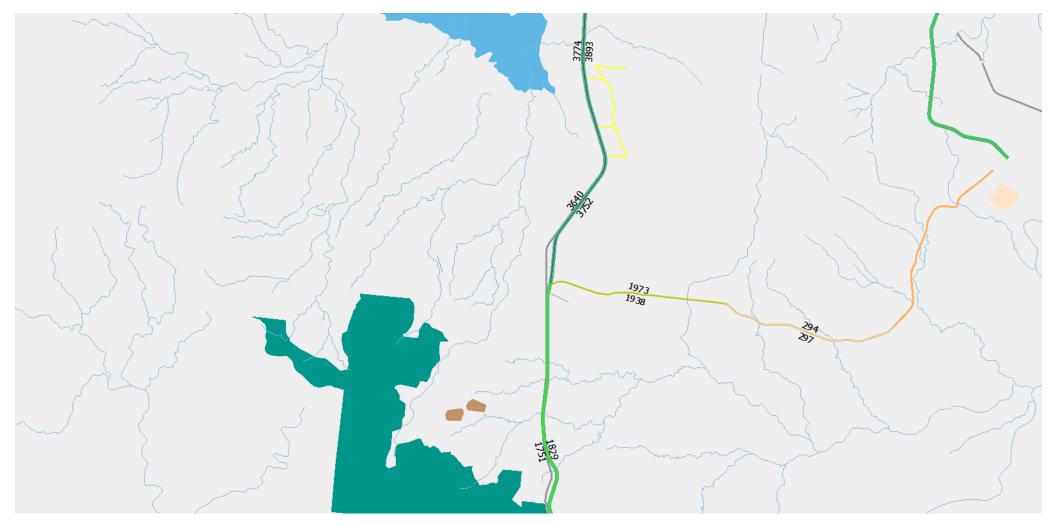
Townsville Aimsun Integrated Model

TAIM 2019 Calibration - Traffic Projections for Flinders Highway at Lansdown Industrial Area

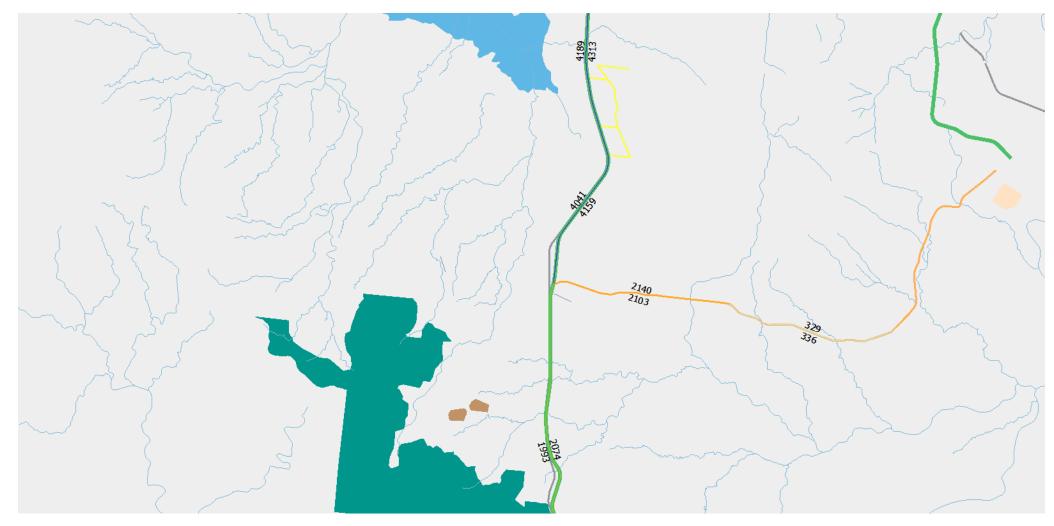
Following are screenshots taken from the 2019 Calibration of the Townsville Aimsun Integrated Model (TAIM) for the Flinders Highway at Lansdown Industrial Area.

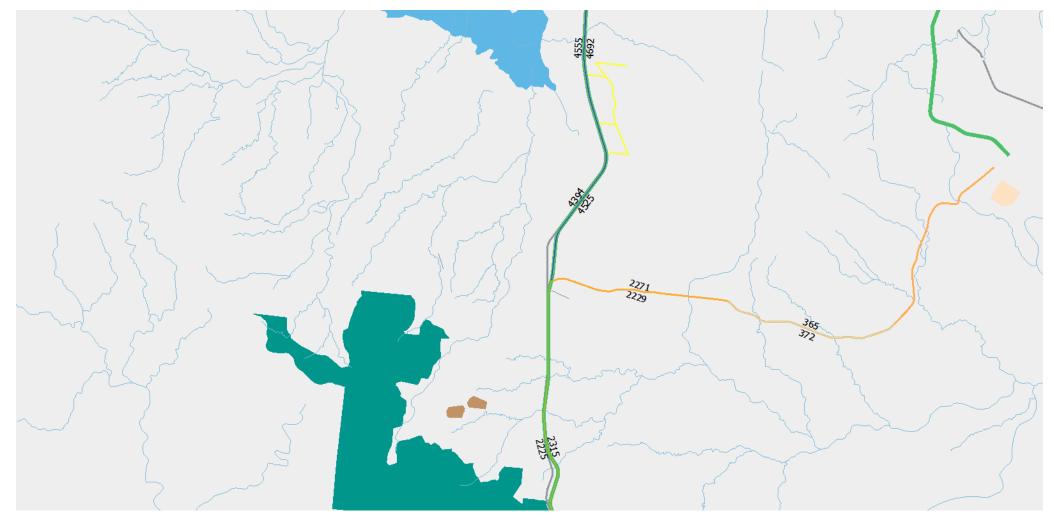

The data provided is calculated AADT, Peak AM & Peak PM volumes calibrated to data collected between Sunday 8th September and Saturday 14th September 2019. The data has been processed to give average weekday hourly counts across the day from the five weekdays supplied.

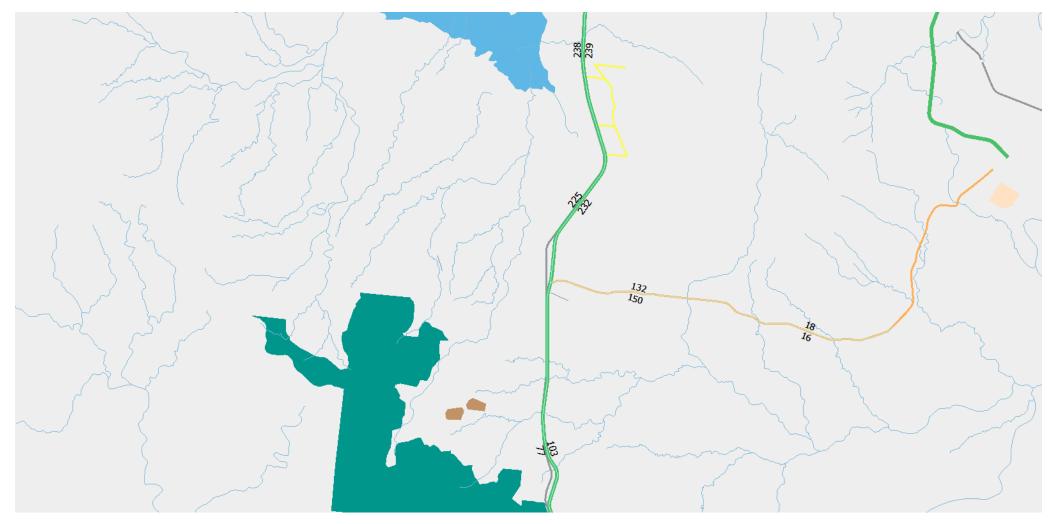
Traffic Model Fact Sheet:

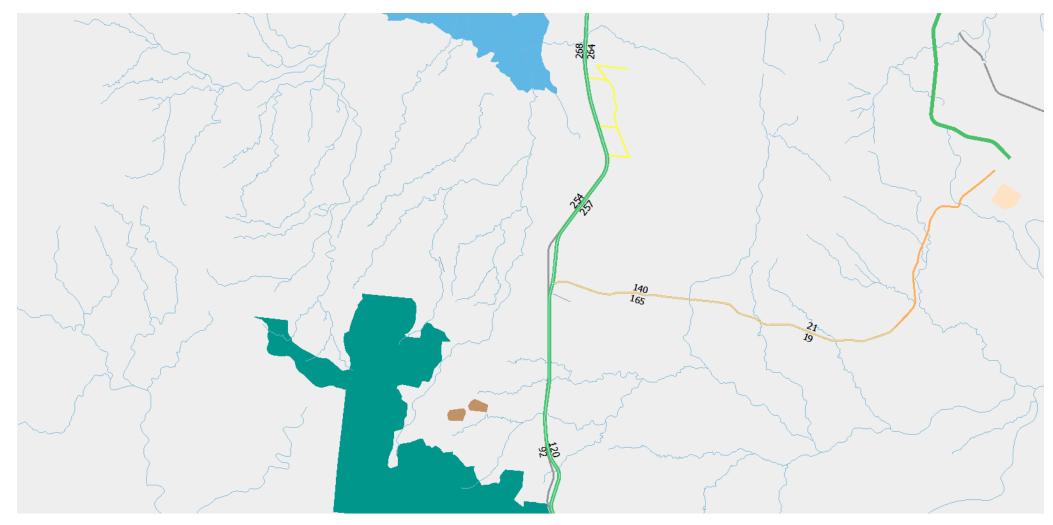

- Townsville City Council Maintains a traffic model for the entire city.
- The model is called the Townsville Aimsun Integrated Model (TAIM).
- The TAIM is a city-wide mesoscopic model and is Council's primary planning tool for the analysis of proposed improvement options, upgrades and interventions on the road network to support growth identified in the Local Government Infrastructure Plan (LGIP).
- The TAIM is calibrated annually against traffic signal information provided by the Department of Transport and Main Roads and provides detailed traffic flow information across the entire city for the calibration year and future year projections in 2021, 2026, 2031 and 2036.
- The TAIM is also used to assess the impacts of land development proposals on the operation of the Townsville road network.
- Model information comprising traffic flow data can be provided by Council upon request, Council encourages the use of this data when submitting a development application for assessment as the modelled traffic flows represent the planned future network structure in accordance with the LGIP.

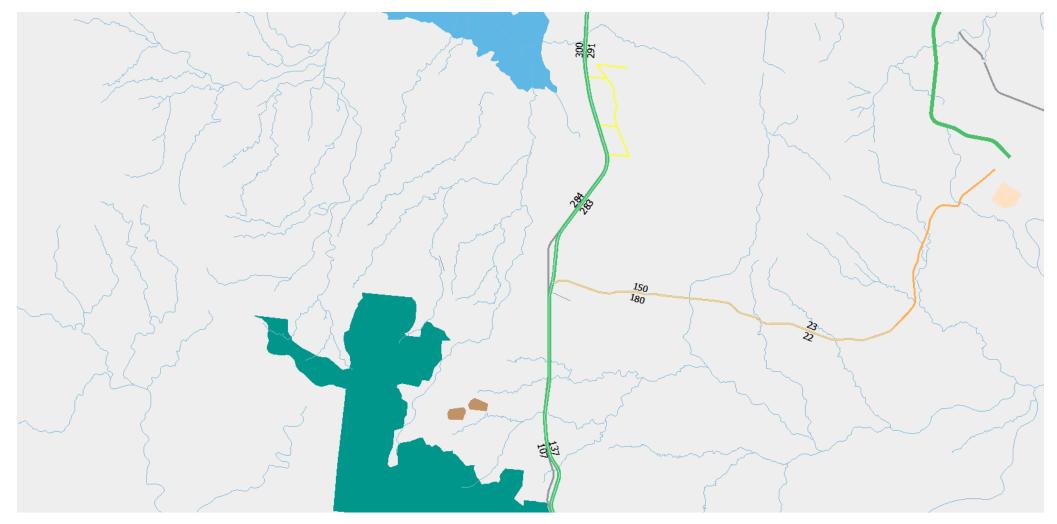
The following limitations apply to the Traffic Model

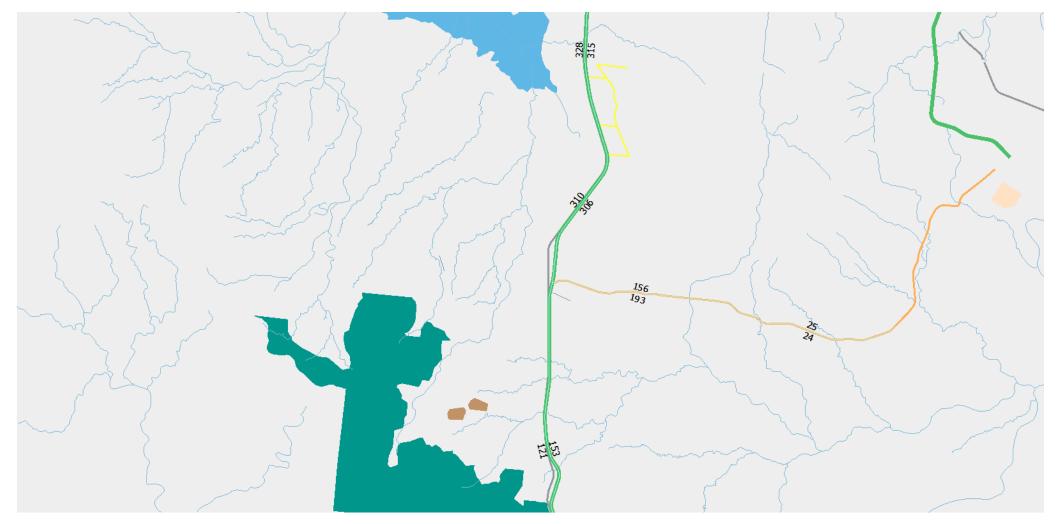

- The TAIM is an imperfect representation of traffic information on the road network in the calibration year. The traffic model has been developed using Aimsun traffic modelling software and provides an interpretation of the traffic conditions limited by the modelling processes.
- The model has been calibrated against traffic flow data recorded by vehicle detection equipment at 148 signalised intersections comprising 2175 detection counts, and 55 mid-block permanent traffic counter sites located across the city.
- Townsville City Council accepts no responsibility for damages, if any, suffered by any party because of decisions or actions made based on data extracted from the model.

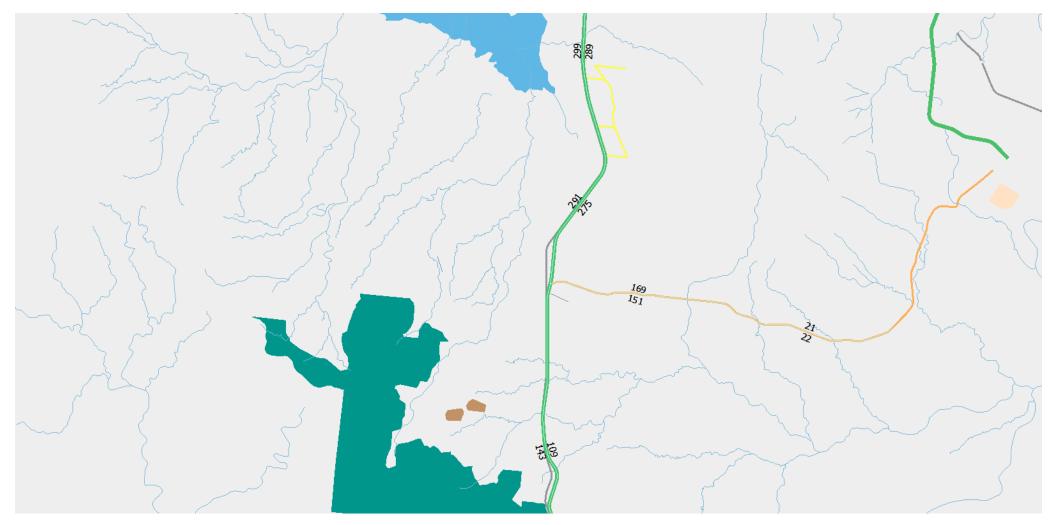

FLINDERS HIGHWAY AT LANSDOWN - 2021 PROJECTION - AADT

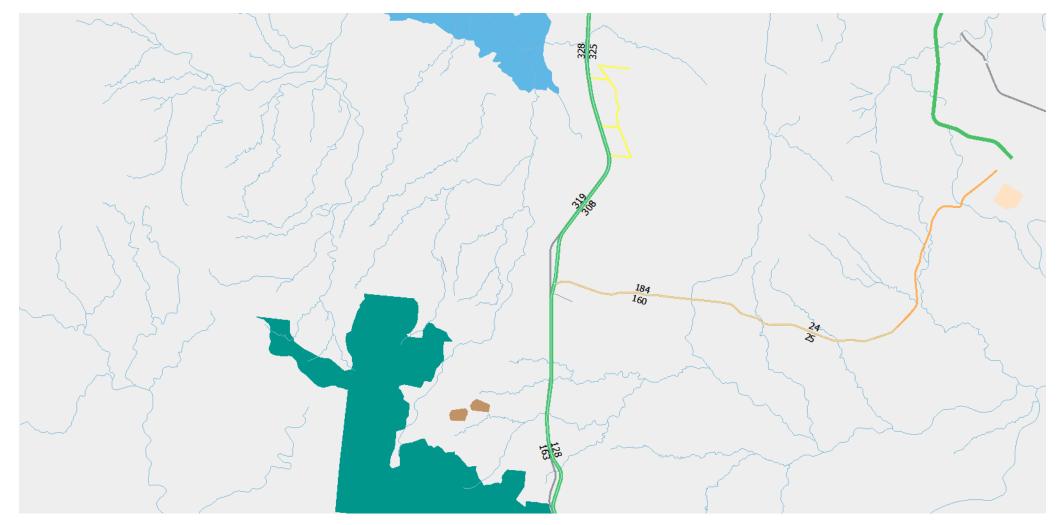

FLINDERS HIGHWAY AT LANSDOWN - 2026 PROJECTION - AADT

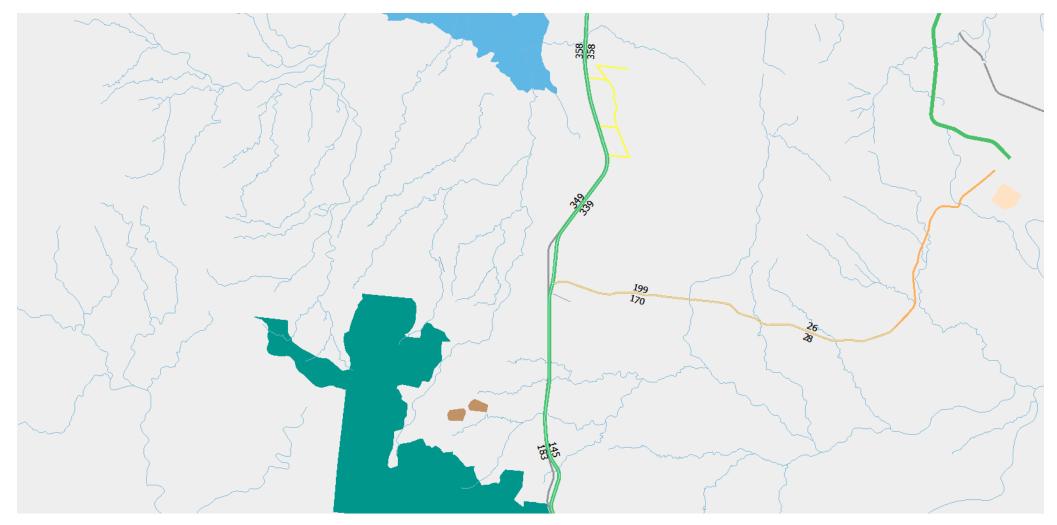

FLINDERS HIGHWAY AT LANSDOWN - 2031 PROJECTION - AADT

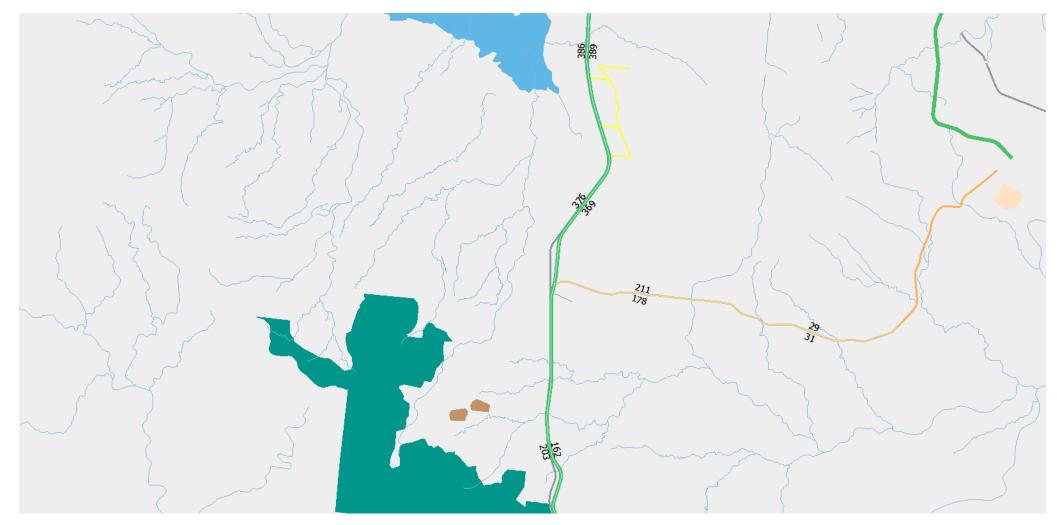

FLINDERS HIGHWAY AT LANSDOWN - 2036 PROJECTION - AADT

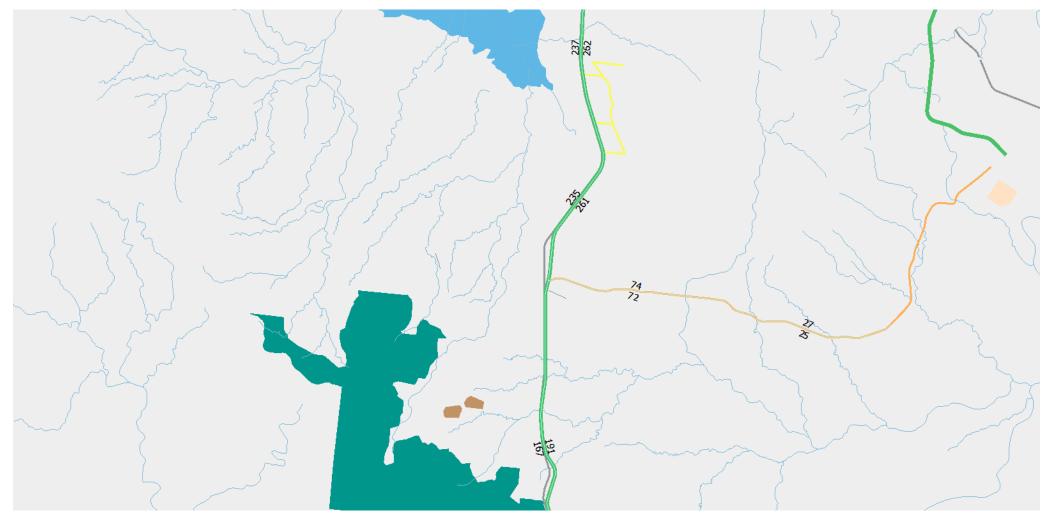

FLINDERS HIGHWAY AT LANSDOWN - 2021 PROJECTION - PEAK AM


FLINDERS HIGHWAY AT LANSDOWN - 2026 PROJECTION - PEAK AM


FLINDERS HIGHWAY AT LANSDOWN - 2031 PROJECTION - PEAK AM


FLINDERS HIGHWAY AT LANSDOWN - 2036 PROJECTION - PEAK AM


FLINDERS HIGHWAY AT LANSDOWN - 2021 PROJECTION - PEAK PM


FLINDERS HIGHWAY AT LANSDOWN - 2026 PROJECTION - PEAK PM

FLINDERS HIGHWAY AT LANSDOWN - 2031 PROJECTION - PEAK PM

FLINDERS HIGHWAY AT LANSDOWN - 2036 PROJECTION - PEAK PM

FLINDERS HIGHWAY AT LANSDOWN - 2021 PROJECTION - HCV DAILY TRAFFIC

Attachment B Drive IT letter

Department of
State Development,
Manufacturing,
Infrastructure and Planning

Our reference: SDA-0717-040799

Your reference: MI17/0015

8 February 2019

Chief Executive Officer
Townsville City Council
PO Box 1268
TOWNSVILLE QLD 4810
developmentassessment@townsville.qld.gov.au

Attention: Jeff Smith

Dear Mr Smith

SARA concurrence agency response—132 Bidwilli Road, Calcium

(Given under section 285 of the Sustainable Planning Act 2009)

The concurrence agency material for the development application described below was received by the Department of State Development, Manufacturing, Infrastructure and Planning (formally Department of Infrastructure, Local Government and Planning) under section 272 of the Sustainable Planning Act 2009 on 12 July 2017.

Referral triggers

The development application was referred to the department under the following provisions of the Sustainable Planning Regulation, 2009:

Referral trigger

Schedule 7, Table 3, Item 2 – Development impacting on state transport

infrastructure

Response

Date of response:

8 February 2019

Response details:

Concurrence agency response with conditions and approval of

stage 3 events as a preliminary approval only

Development details:

Development Permit for Material Change of Use - Motor Sport

and Driver Education Facility (stage 1 and 2 events)

Preliminary Approval for a Material Change of Use - Motor Sport

and Driver Education Facility (stage 3 events)

Conditions:

The conditions set out in Attachment 1 must be attached to any

development approval

Townsville City Council

Received 08/02/2019

Development Assessment Advisory Team Level 13, 1 William Street BRISBANE QLD 4000 PO Box 15009, CITY EAST QLD 4002

Page 1

Location details

Street address: 132 Bidwilli Road, Calcium

Real property description: Lot 19 on RP901592, Lot 38 on E124269 and Lots 31 & 39 on

E124247

Local government area: Townsville City Council

Applicant details

Applicant name: Drive It NQ

C/- Milford Planning Consultants

Applicant contact details: PO BOX 5463

TOWNSVILLE QLD 4810 info@milfordplanning.com.au

A copy of this response has been sent to the applicant for their information.

For further information, please contact Duncan Livingstone, Principal Planner, on 3452 7180, or email duncan.livingstone@dsdmip.qld.gov.au, who will be pleased to assist.

Yours sincerely

Steve Conner

Executive Director - Planning Group

cc: Drive It NQ

C/- Milford Planning Consultants - info@milfordplanning.com.au

enc: Attachment 1-Concurrence agency conditions

Attachment 2—Reasons for imposing conditions

Attachment 3-Advice to the applicant

Attachment 4-Approved plan and specifications

Attachment 1—Concurrence agency conditions

No.	Conditions	Condition timing
	lopment Permit for Material Change of Use – Motor Sport and Di ity (Stage 1 and 2 events)	river Education
admi of Tra deve	lopment impacting on state transport infrastructure (threshold) —The nistering the Sustainable Planning Act, 2009 nominates the Director-lansport and Main Roads to be the enforcement authority for the development approval relates for the administration and enforcement of alving conditions:	General of Department lopment to which this
Stage	e 1 events	
1.	Vehicular access to the site is to be in accordance with Site Access, prepared by Milford Planning, dated 07/02/2019, reference M0000-SK-03, Sheet 1 of 1.	At all times
2.	(a) The occupancy and use of the development for Stage 1 events must not generate more than 75 vehicle trips per hour in accordance with Drive It NQ – Staging Schedule of Events, received 23 January 2019, version 3	(a) At all times
	(b) Provide the Department of Transport and Main Roads with attendance records evidencing part (a) of this condition has been complied with.	(b) Every twelve (12) months from the commencement of use
3.	(a) A Traffic Management Plan must be prepared by a Registered Professional Engineer of Queensland (RPEQ) and given to the Program Delivery and Operations Unit, North Queensland Region at North Queensland.IDAS@tmr.qld.gov.au within the Department of Transport and Main Roads (b) The Traffic Management Plan must demonstrate: (i) vehicles are directed to the proposed access route referenced in condition 1 (ii) vehicles do not utilise Bidwilli Road and Ghost Gum	(a) and (b) Prior to obtaining development approval for building work or operational work, whichever occurs first
	Road east of the site for access (iii) maximum vehicle trips per hour are in accordance with condition 2. The Traffic Management Plan is to be prepared in	
	accordance with: - Department of Transport and Main Roads' Guide to Traffic Impact Assessment 2017 - Road Planning and Design Manual (2 nd edition) - Austroads Guide to Traffic Management and Guide to Road Safety.	

	(c) The operation of the development must be undertaken in accordance with the Traffic Management Plan.	(c) At all times during operation
4.	(a) A Construction Management Plan, including a Traffic Management Plan, must be prepared by a Registered Professional Engineer of Queensland (RPEQ) and given to the Program Delivery and Operations Unit, North Queensland Region at North.Queensland.IDAS@tmr.qld.gov.au within the Department of Transport and Main Roads	(a) and (b) Prior to obtaining development approval for building work or operational work, whichever occurs first
	(b) The Construction Management Plan must demonstrate that there will be no disruption to: (i) the safety and operational integrity of the railway level crossing of the Great Northern Line at the Old Flinders Highway (ID: 1071)	occurs mst
	(ii) the safety and operational efficiency of the Flinders Highway / Woodstock-Giru Road / Glenn Road intersection during the course of construction.	
	(c) The construction of the development must be undertaken in accordance with the Construction Management Plan.	(c) At all times during construction
5.	(a) Stormwater management of the development must ensure no worsening or actionable nuisance to the state-controlled road and railway	(a) At all times
	 (b) Any works on the land must not: (i) create any new discharge points for stormwater runoff onto the state-controlled road and railway (ii) interfere with and/or cause damage to the existing stormwater drainage on the state-controlled road and railway (iii) surcharge any existing culvert or drain on the state-controlled road and railway (iv) reduce the quality of stormwater discharge onto state-controlled road and railway. 	(b) At all times
	(c) RPEQ certification, with supporting documentation, must be provided to the Program Delivery and Operations Unit, North Queensland Region at North.Queensland.IDAS@tmr.qld.gov.au within the Department of Transport and Main Roads, confirming that the development has been constructed in accordance with parts (a) and (b) of this condition.	(c) Prior to the commencement of use
Stage	2 events	
6.	Vehicular access to the site is to be in accordance with Site Access, prepared by Milford Planning, dated 07/02/2019, reference M0000-SK-03, Sheet 1 of 1.	At all times

7.	(a) The occupancy and use of the development for Stage 2 events must not generate more than 250 vehicle trips per hour in accordance with Drive It NQ – Staging Schedule of Events, received 23 January 2019, version 3	(a) At all times
	(b) Provide the Department of Transport and Main Roads with attendance records evidencing part (a) of this condition has been complied with.	(b) Every twelve (12) months from the commencement of use
8.	(a) A Traffic Management Plan must be prepared by a Registered Professional Engineer of Queensland (RPEQ) and given to the Program Delivery and Operations Unit, North Queensland Region at North.Queensland.IDAS@tmr.qld.gov.au within the Department of Transport and Main Roads	(a) and (b) Prior to obtaining development approval for building work or operational work, whichever occurs first
	(b) The Traffic Management Plan must demonstrate: (i) vehicles are directed to the proposed access route referenced in condition 6 (ii) vehicles do not utilise Bidwilli Road and Ghost Gum Road east of the site for access (iii) maximum vehicle trips per hour are in accordance with condition 7.	
	The Traffic Management Plan is to be prepared in accordance with: - Department of Transport and Main Roads' Guide to Traffic Impact Assessment 2017 - Road Planning and Design Manual (2 nd edition) - Austroads Guide to Traffic Management and Guide to Road Safety.	
	(c) The operation of the development must be undertaken in accordance with the Traffic Management Plan.	(c) At all times during operation
Э.	(a) A Construction Management Plan, including Traffic Management Plan, must be prepared by a Registered Professional Engineer of Queensland (RPEQ) and given to the Program Delivery and Operations Unit, North Queensland Region at North.Queensland.IDAS@tmr.qld.gov.au within the Department of Transport and Main Roads	(a) and (b) Prior to the commencement of works
	 (b) The Construction Management Plan must demonstrate that there will be no disruption to: (i) the safety and operational integrity of the railway level crossing of the Great Northern Line at the Old Flinders Highway (ID: 1071) 	

	(ii) the safety and operational efficiency of the Flinders Highway / Woodstock-Giru Road / Glenn Road intersection during the course of construction. (c) The construction of the development must be undertaken in accordance with the Construction Management Plan.	(c) At all times during construction
10.	Stormwater management of the development must ensure no worsening or actionable nuisance to the state-controlled road and railway	(a) At all times
	(b) Any works on the land must not: (i) create any new discharge points for stormwater runoff onto the state-controlled road and railway (ii) interfere with and/or cause damage to the existing stormwater drainage on the state-controlled road and railway	(b) At all times
	(v) surcharge any existing culvert or drain on the state- controlled road and railway (vi) reduce the quality of stormwater discharge onto state- controlled road and railway.	
	(c) RPEQ certification, with supporting documentation, must be provided to the Program Delivery and Operations Unit, North Queensland Region at North.Queensland.IDAS@tmr.qld.gov.au within the Department of Transport and Main Roads, confirming that the development has been constructed in accordance with part/s (a) and (b) of this condition.	(c) Prior to the commencement of use
11.	(a) Road works comprising an acceleration lane, a minimum of 500m in length, with a merge taper to the northern approach of the Flinders Highway / Woodstock-Giru Road / Glenn Road intersection, must be provided generally in accordance with the Preliminary Woodstock Road Option b Intersection Overall Layout Plan, prepared by Northern Consulting Engineers, dated 28 April 2016, reference MIL0006/C6b, issue P1 (as amended in red)	(a) and (b) Prior to the commencement of use
	(b) The road works must be designed and constructed in accordance with the Department of Transport and Main Roads' Road Planning and Design Manual, Second Edition and Manual on Uniform Traffic Control Devices (MUTCD) and Austroads Guide to Road Design Part 4A: Unsignalised and Signalised intersections.	
12.	(a) The railway level crossing of the Great Northern Line at the Old Flinders Highway (ID: 1071) must be upgraded to include the following: (i) boom barriers on each side of the crossing in accordance with Section 2.3.8 'Boom barrier' and Figure 4.7 'Railway crossing with straight approach controlled	(a) and (b) Prior to the commencement of use

- by flashing lights and half-boom barrier (Active control)' within AS1742.7:2016 Manual of uniform traffic control devices, Part 7: Railway crossings
- (ii) street lighting on each side of the crossing in accordance with Townsville City Council standards
- (iii) advance warning signage on the Woodstock Avenue approach to the crossing in accordance with Section 2.3.5 - 'Railway crossing flashing signals ahead on side road assembly (RX-7)' and signs W7-4 and W8-3(R) within AS1742.7:2016 Manual of uniform traffic control devices, Part 7: Railway crossings.
- (b) The applicant must provide written evidence from the railway manager (Queensland Rail) to the Program Delivery and Operations Unit, North Queensland Region at North.Queensland.IDAS@tmr.qld.gov.au within the Department of Transport and Main Roads, confirming that the development has been designed and constructed in accordance with part (a) of this condition.

Preliminary Approval for Material Change of Use - Motor Sport and Driver Education Facility - Stage 3 events

Development impacting on state transport infrastructure (threshold) —The chief executive administering the Sustainable Planning Act 2009 nominates the Director-General of Department of Transport and Main Roads to be the enforcement authority for the development to which this development approval relates for the administration and enforcement of any matter relating to the following conditions:

- (a) A Traffic Impact Assessment must be prepared by a 13. Registered Professional Engineer of Queensland (RPEQ) and given to the Program Delivery and Operations Unit, North Queensland Region at North.Queensland.IDAS@tmr.qld.gov.au within the Department of Transport and Main Roads. The Traffic Impact Assessment must ensure that there will be no adverse impacts to the safety and operational efficiency of the statecontrolled road network (b) The Traffic Impact Assessment must:
- Prior to issue of the Development Permit

(a) and (b)

- - be developed in accordance with the Department of Transport and Main Roads' Guide to Traffic Impact Assessment 2017 and Road Planning and Design Manual (2nd Edition)
 - (ii) recommend mitigation measures to ensure no adverse impact(s) on the safety and operational efficiency of the state-controlled road network.
- (a) and (b) Prior to issue of the Development Permit
- 14. (a) A Rail Safety Assessment must be prepared and given to the Program Delivery and Operations Unit, North Queensland Region at North.Queensland.IDAS@tmr.qld.gov.au within the Department of Transport and Main Roads. The Rail Safety Assessment must ensure that there will be no adverse

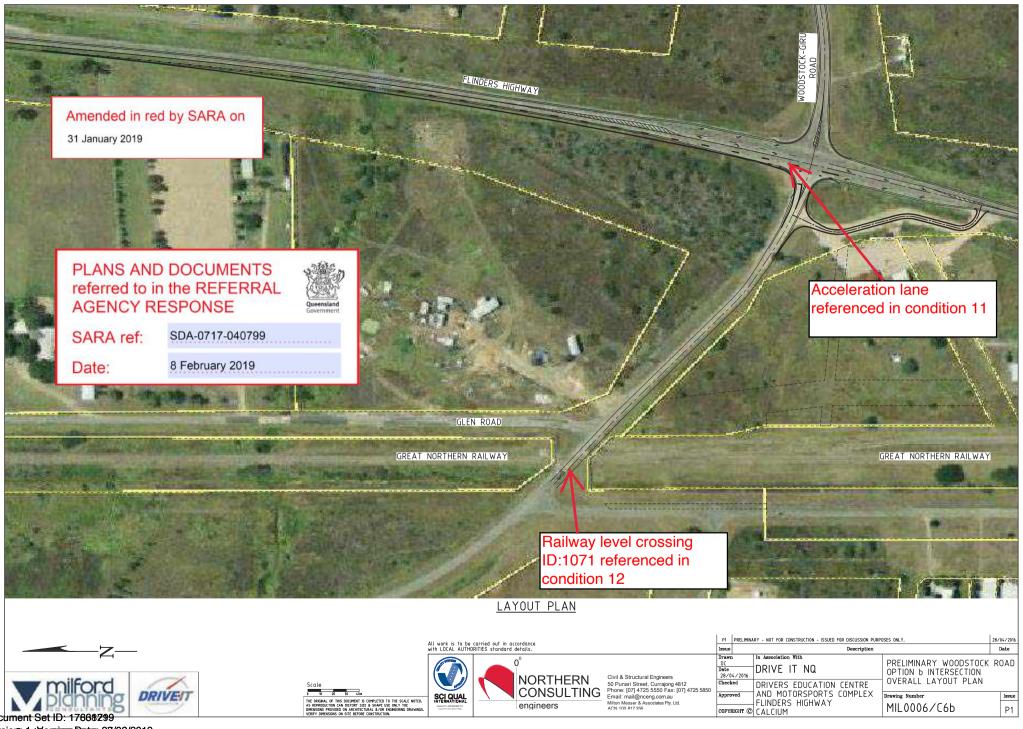
impacts to the safety and operational integrity of the railway corridor.

- (b) The Rail Safety Assessment must:
 - be developed in accordance with Section 2.2 Railway Crossing Safety of the Department of Transport and Main Roads' Guide for Development in a Transport Environment: Rail
 - recommend mitigation measures to ensure no adverse impact(s) on the safety and operational integrity of the rail network.

Attachment 2—Reasons for imposing conditions

The reasons for this decision are:

- To ensure access across the railway to the state-controlled road from the site does not compromise the safety and integrity of the railway and safety and efficiency of the statecontrolled road.
- To ensure the development does not compromise the safe and efficient management or operation of the state-controlled road and railway level crossings.
- To ensure that the impacts of stormwater events associated with development are minimised and managed to avoid creating any adverse impacts on state-transport corridors.
- To ensure the development does not compromise the safe and efficient operation and integrity of state transport infrastructure during construction.
- To ensure the road works on, or associated with, the state-controlled road network are undertaken in accordance with applicable standards.
- To ensure that work on, or associated with, the railway level crossing are undertaken in accordance with applicable standards.


Attachment 3—Advice to the applicant

Further approvals required - Road works approval

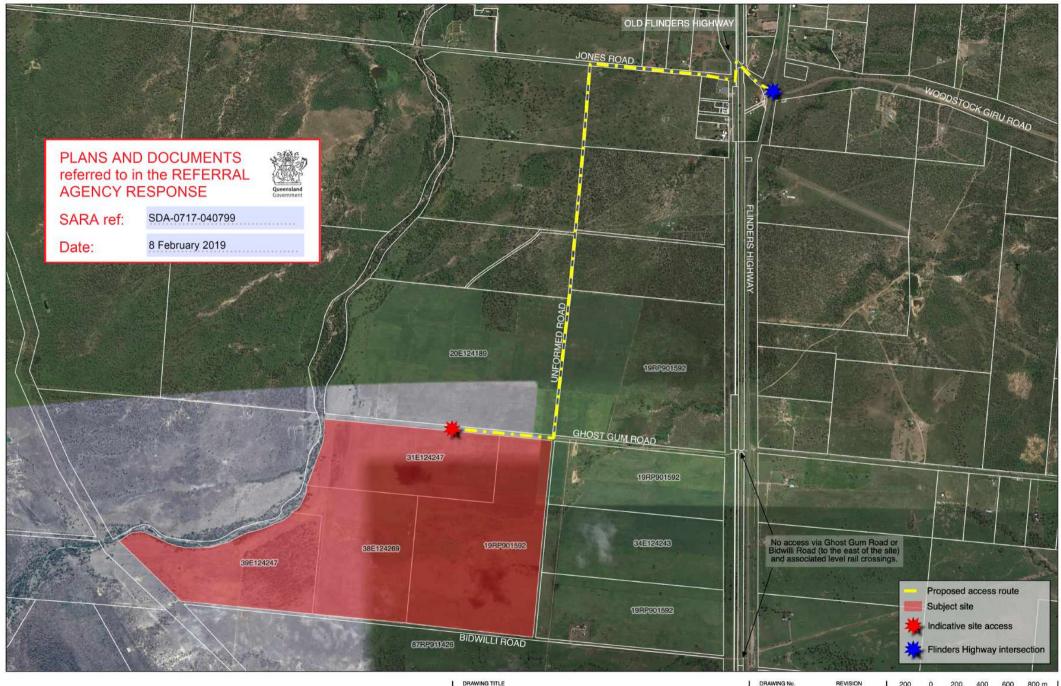
1. Under section 33 of the Transport Infrastructure Act 1994, written approval is required from the Department of Transport and Main Roads to carry out road works on a state-controlled road. Please contact the Department of Transport and Main Roads' at North.Queensland.IDAS@tmr.qld.gov.au to make an application for road works approval. This approval must be obtained prior to commencing any works on the state-controlled road reserve. The approval process may require the approval of engineering designs of the proposed works, certified by a Registered Professional Engineer of Queensland (RPEQ).

Attachment 4—Approved plan and specifications

Document Set ID: 17868299 Version: 1, Version Date: 28/02/2019 Document Set ID: 29320383 Version: 2, Version Date: 28/09/2028

DocuMateriolSet.IDerzess29ates 28/02/2019 Version: 2, Version Date: 28/09/2028

Drive It NQ - Staging Schedule of Events (Version 3)


Stage	Event	Event Frequency	Vehicles Hour (m		Facility
		(per year)	Entrance	Exit	,
	Driver Education	200	20	20	Education pad
	Product Launch and Testing (not requiring race circuit)	200	20	20	Education pad, Off-road circuit
	Off-road/ Rally (practice – weekday)	200	1	1	Off-road circuit
Stage 1	Off-road/ Rally (practice – weekend)	26	2	7	Off-road circuit
(≤75vph)	Karting Practice (weekday)	200	1	1	Karting track
	Karting Practice (weekend)	40	7	7	Karting track
	Off-road/ Rally (minor event)	12	30	44	Off-road circuit
	Karting (minor event)	12	50	75	Karting track
Stage 2	Drags Street Meet	40	250	250	Drag strip
(≤250vph)	Circuit Club Drive	10	146	146	Race circuit
[railway	Off-road/ Rally (major event)	2	96	128	Off-road circuit
crossing upgrade and	Karting (major event)	2	148	198	Karting track
acceleration	Remote Control Cars (minor event)	40	89	44	RC track
lane required]	Remote Control Cars (major event)	1	237	237	RC track
	Speedway (minor event)	8	370	555	Speedway
	Speedway (major event)	2	494	494	Speedway
Stage 3	Burnouts (minor event)	8	488	732	Education pad
(>250vph)	Burnouts (major event)	2	730	974	Education pad
	Drags (minor event)	8	363	545	Drag strip
[traffic impact assessment	Drags (major event)	2	883	1177	Drag strip
required]	Circuit (minor event)	8	251	377	Race circuit
	Circuit (major event)	2	542	723	Race circuit
	Festival/ Concert/ Field Day	2	875	875	Open space, speedway

PLANS AND DOCUMENTS
referred to in the REFERRAL
AGENCY RESPONSE

SARA ref: SDA-0717-040799

Date: 8 February 2019

MILFORD PLANNING 1

Site Access
Drive It NQ Driver Education and Motorsport Facility
PROPERTY ADDRESS
Lot 19 on RP901592, Lot 38 on E124269, and

Lots 31 and 39 on E124247

M0000-SK-03 SCALE (at A3 original) 1:20000 DATE 07/02/2019

SHEET 1 of 1 AUTHOR(S) MAS SOURCE(S)
Millord Flavning GIS at publication date;
DODB extract. State of Queensland, 2019;
serial imagery, Google, 2019.

Drive It NQ - Staging Schedule of Events

Stage	Event	Event Frequency (per year)	Vehicles Hour (m Entrance		Facility
	Driver Education	200	20	20	Education pad
	Product Launch and Testing	200	20	20	Race circuit
	Off-road/ Rally (practice – weekday)	200	1	1	Off-road circuit
Stage 1	Off-road/ Rally (practice – weekend)	26	2	7	Off-road circuit
(≤75vph)	Off-road/ Rally (minor event)	12	30	44	Off-road circuit
	Karting Practice (weekday)	200	1	1	Karting track
	Karting Practice (weekend)	40	7	7	Karting track
	Karting (minor event)	12	50	75	Karting track
	Drags Street Meet	40	250	250	Drag strip
Stage 2	Circuit Club Drive	10	146	146	Race circuit
(≤250vph)	Off-road/ Rally (major event)	2	96	128	Off-road circuit
[acceleration	Karting (major event)	2	148	198	Karting track
lane required]	Remote Control Cars (minor event)	40	89	44	RC track
	Remote Control Cars (major event)	1	237	237	RC track
	Speedway (minor event)	8	370	555	Speedway
Stage 3	Speedway (major event)	2	494	494	Speedway
(>250vph)	Burnouts (minor event)	8	488	732	Education pad
	Burnouts (major event)	2	730	974	Education pad
[traffic management	Drags (minor event)	8	363	545	Drag strip
or significant	Drags (major event)	2	883	1177	Drag strip
intersection upgrade	Circuit (minor event)	8	251	377	Race circuit
required]	Circuit (major event)	2	542	723	Race circuit
	Festival/ Concert/ Field Day	2	875	875	Open space, speedway

Townsville City Council

Approved Subject to Conditions

MI17/0015 26/03/2019

MILFORD PLANNING 1

Attachment C

Intersection count

Light Vehicles Time		North App	roach Flinde	rs Highway		East Appro	ach Woodst	ock Giru Ro	ad	South App	roach Flinde	rs Highway		West Appro	oach Glenn I	Road	
Period Start	Period End	U		SB	L	U	R	WB	L	U		NB ,	L	U	R	EB	L
6:00:00 AM	6:15:00 AM																
6:15:00 AM	6:30:00 AM																
6:30:00 AN	6:45:00 AM																
6:45:00 AN	7:00:00 AM																
7:00:00 AN	7:15:00 AM		4	17	4		2	0	2		3	15	0		0	0	
7:15:00 AN	7:30:00 AM		4	22	0		8	0	1		2	25	4		2	0	
7:30:00 AN	7:45:00 AM		0	25	3		11	0	1		0	16	0		2	2	
7:45:00 AN	1 8:00:00 AM		3	24	3		5	1	4		4	19	4		0	0	
8:00:00 AM	8:15:00 AM		1	21	1		2	2	1		5	15	1		1	2	
3:00:00 PM	3:15:00 PM		0	29	4		0	0	1		1	21	1		2	2	
3:15:00 PM	1 3:30:00 PM		3	21	5		1	0	1		1	20	0		0	0	
3:30:00 PM	1 3:45:00 PM		3	21	6		4	0	2		2	13	0		0	0	
3:45:00 PM	1 4:00:00 PM		1	17	3		3	0	1		2	26	2		0	0	
4:00:00 PN	1 4:15:00 PM		0	20	7		1	1	. 1		1	20	0		3	0	
4:15:00 PM	1 4:30:00 PM		1	24	4		3	0	0		4	18	0		3	2	
4:30:00 PM	1 4:45:00 PM		5	24	5		0	1	4		1	17	2		2	1	
4:45:00 PM	5.00.00 PM		3	22	0		٥	1	1		1	11	2		0	1	

Heavy Vehicles													
Time		North Appr	roach Flinde	rs Highway		East Appro	ach Woodst	ock Giru Ro	ad	South Appr	oach Flinder	rs Highway	
Period Start	Period End	U	R	SB	L	U	R	WB	L	U	R	NB	L
6:00:00 AM	6:15:00 AM												Г
6:15:00 AM	6:30:00 AM												Г

6:00:00 AM	6:15:00 AM												
6:15:00 AM	6:30:00 AM												
6:30:00 AM	6:45:00 AM												
6:45:00 AM	7:00:00 AM												
7:00:00 AM	7:15:00 AM	0	8	0	0	0	0	0	3	0	0	0	0
7:15:00 AM	7:30:00 AM	2	2	1	0	0	0	1	0	0	0	0	0
7:30:00 AM	7:45:00 AM	0	3	0	0	1	0	0	2	0	0	1	1
7:45:00 AM	8:00:00 AM	0	11	0	0	0	1	1	5	0	0	0	0
8:00:00 AM	8:15:00 AM	0	8	0	0	0	1	0	7	0	1	0	0
3:00:00 PM	3:15:00 PM	0	5	0	0	0	0	0	5	0	1	0	1
3:15:00 PM	3:30:00 PM	1	6	0	0	0	0	1	11	1	0	0	1
3:30:00 PM	3:45:00 PM	1	3	1	0	0	0	0	7	0	0	0	0
3:45:00 PM	4:00:00 PM	0	2	0	0	1	0	1	5	0	0	0	0
4:00:00 PM	4:15:00 PM	0	9	0	0	0	0	0	4	0	0	0	0
4:15:00 PM	4:30:00 PM	0	5	0	0	0	0	0	4	0	0	0	0
4:30:00 PM	4:45:00 PM	1	4	0	0	0	1	0	2	0	0	1	0
4:45:00 PM	5:00:00 PM	0	4	2	0	0	1	1	8	0	0	0	0

West Approach Glenn Road

Total																			
Time		North A	pproach	Flinders H	ighway	East	Approach	Woodstock	Giru Road	l Sc	outh Approa	ch Flinders	Highway	We	st Approac	h Glenn Ro	ad		
Period Start	Period End	U	R	SB	L	U	R	W	B L	U	R	N	B L	U	R	EI	B L		Total 15 min
6:00:00 AM	6:15:00 AM		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:15:00 AM	6:30:00 AM		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:30:00 AM	6:45:00 AM		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:45:00 AM	7:00:00 AM		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:00:00 AM	7:15:00 AM		0	4	25	4	0	2	0	2	0	3	18	0	0	0	0	4	62
7:15:00 AM	7:30:00 AM		0	6	24	1	0	8	0	1	0	3	25	4	0	2	0	4	78
7:30:00 AM	7:45:00 AM		0	0	28	3	0	11	1	1	0	0	18	0	0	2	3	2	69
7:45:00 AM	8:00:00 AM		0	3	35	3	0	5	1	5	0	5	24	4	0	0	0	3	88
8:00:00 AM	8:15:00 AM		0	1	29	1	0	2	2	2	0	5	22	1	0	2	2	2	71
8:30:00 AM	8:45:00 AM		0	0	34	7	0	4	0	3	0	0	23	0	0	2	0	1	74
8:45:00 AM	9:00:00 AM		0	5	22	1	0	3	0	4	0	3	26	2	0	1	0	1	68
3:00:00 PM	3:15:00 PM		0	0	34	4	0	0	0	1	0	1	26	1	0	3	2	5	77
3:15:00 PM	3:30:00 PM		0	4	27	5	0	1	0	1	0	2	31	1	0	0	0	3	75
3:30:00 PM	3:45:00 PM		0	4	24	7	0	4	0	2	0	2	20	0	0	0	0	0	63
3:45:00 PM	4:00:00 PM		0	1	19	3	0	3	1	1	0	3	31	2	0	0	0	0	64
4:00:00 PM	4:15:00 PM		0	0	29	7	0	1	1	1	0	1	24	0	0	3	0	2	69
4:15:00 PM	4:30:00 PM		0	1	29	4	0	3	0	0	0	4	22	0	0	3	2	1	69
4:30:00 PM	4:45:00 PM		0	6	28	5	0	0	1	5	0	1	19	2	0	2	2	1	72
4:45:00 PM	5:00:00 PM		0	3	27	11	0	9	1	1	0	2	19	2	0	0	1	1	77
5:00:00 PM	5:15:00 PM		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45:00 PM	6:00:00 PM		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	AM		0	24	140	12	0	44	8	20	0	20	100	16	0	8	12	16	
	PM		0	24	116	44	0	36	4	20	0	16	96	8	0	12	8	8	_
eak flow factor	AM			41.7%	82.9%	66.7%		59.1%	50.0%	45.0%		65.0%	89.0%	56.3%		75.0%	41.7%	68.8%	
ak now ractor	PM			41.7%	97.4%	61.4%		36.1%	75.0%	35.0%		50.0%	87.5%	50.0%		66.7%	62.5%	62.5%	
ed saturation flow	AM		Choo	se critical	movemen	t													ĺ
rate (veh/hr)	PM		Only	fill 1 out o	f 3 cells		too	alculate ar	ea type fac	tor	fo	or the entire	approach						
ea type factor	AM				0.88				0.99				0.81				1.07		
ea type factor	PM				1.00				1.24				0.84				1.06		
led saturation flow	AM				1356				1857				1454				1784		
rate (veh/hr)	PM				1602				1966				1449				1901		
Other notes	AM																		
	PM																		

		Light Vehicles I	•															
Time		North Approac		ighway	East	Approach V	Voodstock G	iru Road	Sout	h Approach	Flinders Hi	ghway	West	Approach				
Period Start	Period End	U R	SB	L	U	R	WB	L	U	R	NB	L	U	R	EB	L	1	otal 1 hour
6:00:00 AM	7:00:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:15:00 AM	7:15:00 AM	0	4	17	4	0	2	0	2	0	3	15	0	0	0	0	4	51
6:30:00 AM	7:30:00 AM	0	8	39	4	0	10	0	3	0	5	40	4	0	2	0	8	123
6:45:00 AM	7:45:00 AM	0	8	64	7	0	21	0	4	0	5	56	4	0	4	2	9	184
7:00:00 AM	8:00:00 AM	0	11	88	10	0	26	1	8	0	9	75	8	0	4	2	12	254
7:15:00 AM	8:15:00 AM	0	8	92	7	0	26	3	7	0	11	75	9	0	5	4	10	257
7:30:00 AM	8:30:00 AM	0	5	88	7	0	20	4	7	0	10	72	7	0	3	4	7	234
7:45:00 AM	8:45:00 AM	0	5	92	11	0	13	4	8	0	10	72	7	0	3	2	7	234
8:00:00 AM	9:00:00 AM	0	7	86	9	0	11	3	7	0	9	76	5	0	4	2	5	224
3:00:00 PM	4:00:00 PM	0	7	88	18	0	8	0	5	0	6	80	3	0	2	2	6	225
3:15:00 PM	4:15:00 PM	0	7	79	21	0	9	1	5	0	6	79	2	0	3	0	4	216
3:30:00 PM	4:30:00 PM	0	5	82	20	0	11	1	4	0	9	77	2	0	6	2	3	222
3:45:00 PM	4:45:00 PM	0	7	85	19	0	7	2	6	0	8	81	4	0	8	3	4	234
4:00:00 PM	5:00:00 PM	0	9	91	25	0	13	3	5	0	7	66	4	0	8	4	5	240
4:15:00 PM	5:15:00 PM	0	9	71	18	0	12	2	4	0	6	46	4	0	5	4	3	184
4:30:00 PM	5:30:00 PM	0	8	47	14	0	9	2	4	0	2	28	4	0	2	2	2	124
4:45:00 PM	5:45:00 PM	0	3	23	9	0	9	1	0	0	1	11	2	0	0	1	1	61
		Heavy Vehicles	•								en i un							
Time	Davied Ford	North Approac	n Flinders H	ighway			Voodstock G				Flinders Hi			t Approach			_	
Period Start	Period End	North Approac	n Flinders Hi SB	ighway L	U	R	WB	L	U	R	NB	L	U	R	EB	L		Total 1 hour
Period Start 6:00:00 AM	7:00:00 AM	North Approach U R 0	n Flinders Hi SB 0	ighway L 0	U 0	 R O	WB 0	L 0	U 0	R 0	NB O	L 0	U 0	R 0	EB 0	0	0	0
Period Start 6:00:00 AM 6:15:00 AM	7:00:00 AM 7:15:00 AM	North Approach U R 0 0	n Flinders Hi SB 0 0	ighway L 0 8	U 0 0	R 0 0	WB 0 0	L 0 0	U 0 0	R 0 0	NB 0 0	L 0 3	U 0 0	R 0 0	EB 0 0	0	0	0 11
Period Start 6:00:00 AM 6:15:00 AM 6:30:00 AM	7:00:00 AM 7:15:00 AM 7:30:00 AM	North Approach UR 0 0 0	n Flinders Hi SB 0 0 2	ighway L 0 8 10	U 0 0 1	R 0 0 0	WB 0 0 0	L 0 0 0	U 0 0 0	R 0 0 0	NB 0 0 1	L 0 3 3	U 0 0 0	R 0 0 0	EB 0 0 0	0 0 0	0 0 0	0 11 17
Period Start 6:00:00 AM 6:15:00 AM 6:30:00 AM 6:45:00 AM	7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM	North Approach UR 0 0 0 0	on Flinders Hi SB 0 0 2 2	ghway L 0 8 10 13	U 0 0 1 1	R 0 0 0 0 0	WB 0 0 0	0 0 0 1	U 0 0 0	R 0 0 0	NB 0 0 1	L 0 3 3 5	U 0 0 0	R 0 0 0	EB 0 0 0 0	0 0 0 1	0 0 0 1	0 11 17 25
Period Start 6:00:00 AM 6:15:00 AM 6:30:00 AM 6:45:00 AM 7:00:00 AM	7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM 8:00:00 AM	North Approach UR 0 0 0 0 0 0	n Flinders Hi SB 0 0 2 2 2	lighway L 0 8 10 13 24	U 0 0 1 1	R 0 0 0 0 0 0 0	WB 0 0 0 0	0 0 0 1 1	U 0 0 0 0	R 0 0 0 0	NB 0 0 1 1	L 0 3 3 5	U 0 0 0 0	R 0 0 0 0	EB 0 0 0 0 0	0 0 0 1 1	0 0 0 1 1	0 11 17 25 43
Period Start 6:00:00 AM 6:15:00 AM 6:30:00 AM 6:45:00 AM 7:00:00 AM 7:15:00 AM	7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM 8:00:00 AM 8:15:00 AM	North Approact UR 0 0 0 0 0 0 0 0	n Flinders Hi SB 0 0 2 2 2 2	L 0 8 10 13 24 24	U 0 0 1 1 1	R 0 0 0 0 0	WB 0 0 0 0 0	0 0 0 1 1	U 0 0 0 0 1 2	R 0 0 0 0 0	NB 0 0 1 1 2	L 0 3 3 5 10 14	U 0 0 0 0 0	R 0 0 0 0 0	EB 0 0 0 0 0 0	0 0 0 1 1	0 0 0 1 1	0 11 17 25 43 49
Period Start 6:00:00 AM 6:15:00 AM 6:30:00 AM 6:45:00 AM 7:00:00 AM 7:15:00 AM	7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM 8:00:00 AM 8:15:00 AM 8:30:00 AM	North Approact UR 0 0 0 0 0 0 0 0 0 0	n Flinders Hi SB 0 0 2 2 2 2 2	L 0 8 10 13 24 24 30	U 0 0 1 1 1 1	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WB 0 0 0 0 0 0	0 0 0 1 1 1 2	U 0 0 0 0 1 2 2	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NB 0 0 1 1 2 2 1	L 0 3 3 5 10 14 20	U 0 0 0 0 0	R 0 0 0 0 0 0	EB 0 0 0 0 0 0 1	0 0 0 1 1 1	0 0 0 1 1 1	0 11 17 25 43 49
Period Start 6:00:00 AM 6:15:00 AM 6:30:00 AM 7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM	7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM 8:00:00 AM 8:15:00 AM 8:30:00 AM	North Approact UR 0 0 0 0 0 0 0 0 0 0 0 0	n Flinders Hi SB 0 0 2 2 2 2 2 1	0 8 10 13 24 24 30 32	U 0 0 1 1 1 1 1	R 0 0 0 0 0 0	WB 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 2	U 0 0 0 0 1 2 2	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NB 0 0 1 1 2 2 2 1 1 1	0 3 3 5 10 14 20 25	U 0 0 0 0 0 0	R 0 0 0 0 0 0	EB 0 0 0 0 0 0 1 1 1 1	0 0 0 1 1 1 1	0 0 0 1 1 1 1	0 11 17 25 43 49 60 65
Period Start 6:00:00 AM 6:15:00 AM 6:30:00 AM 6:45:00 AM 7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM	7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM 8:00:00 AM 8:15:00 AM 8:30:00 AM 8:45:00 AM	North Approact U R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n Flinders Hi SB 0 0 2 2 2 2 2 1 1	ghway L 0 8 10 13 24 24 30 32 25	U 0 0 1 1 1 1 1 1	R 0 0 0 0 0 0 0	WB 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 2 1	U 0 0 0 0 1 2 2 3 3	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NB 0 0 1 1 2 2 1 1 0 0	0 3 3 5 10 14 20 25 23	U 0 0 0 0 0 0	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EB 0 0 0 0 0 1 1 1 1 1 1	0 0 0 1 1 1 1 0	0 0 0 1 1 1 1 0	0 11 17 25 43 49 60 65 55
Period Start 6:00:00 AM 6:15:00 AM 6:30:00 AM 7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM 8:00:00 AM 3:00:00 PM	7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM 8:00:00 AM 8:15:00 AM 8:30:00 AM 9:00:00 AM	North Approact U R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n Flinders Hi SB 0 0 2 2 2 2 2 1 1 1 2	ghway L 0 8 10 13 24 24 30 32 25 16	U 0 0 1 1 1 1 1 1 1	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WB 0 0 0 0 0 0 0 0 0 0 0 0 0	L 0 0 0 1 1 1 2 1 1	U 0 0 0 0 1 2 2 3 3	R O O O O O O O O O	NB 0 0 1 1 1 2 2 2 1 1 1 0 2 2	0 3 3 5 10 14 20 25 23 28	U 0 0 0 0 0 0 0 0	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EB 0 0 0 0 0 1 1 1 1 1 1 1 1	0 0 1 1 1 1 0 0	0 0 0 1 1 1 1 0 0	0 11 17 25 43 49 60 65 55
Period Start 6:00:00 AM 6:15:00 AM 6:30:00 AM 6:30:00 AM 7:00:00 AM 7:30:00 AM 7:45:00 AM 8:00:00 AM 3:00:00 PM 3:15:00 PM	7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM 8:00:00 AM 8:30:00 AM 8:45:00 AM 9:00:00 AM 4:00:00 PM 4:15:00 PM	North Approact U R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n Flinders Hi SB 0 0 2 2 2 2 2 1 1 1 2 2	ghway L 0 8 10 13 24 24 30 32 25 16 20	U 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L 0 0 0 1 1 1 2 1 1 1 1 1 1 1	U 0 0 0 0 1 2 2 3 3 0	R O O O O O O O O O O	NB 0 0 1 1 2 2 1 1 0 2 2	L 0 3 3 5 10 14 20 25 23 28 27	U 0 0 0 0 0 0 0 0 0	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EB 0 0 0 0 0 0 1 1 1 1 1 1 0 0	0 0 1 1 1 1 0 0	0 0 0 1 1 1 1 0 0	0 11 17 25 43 49 60 65 55 54
Period Start 6:00:00 AM 6:15:00 AM 6:30:00 AM 6:45:00 AM 7:00:00 AM 7:30:00 AM 7:45:00 AM 8:00:00 AM 3:00:00 PM 3:15:00 PM	7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM 8:00:00 AM 8:15:00 AM 8:45:00 AM 9:00:00 AM 4:00:00 PM 4:35:00 PM	North Approact U R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n Flinders Hi SB 0 0 2 2 2 2 2 1 1 1 2 2	L 0 8 10 13 24 24 30 32 25 16 20 19	U 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L 0 0 0 1 1 1 2 1 1 1 1	U 0 0 0 0 1 2 2 3 3 0 0	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NB 0 0 1 1 2 2 1 1 0 2 1	L 0 3 3 5 10 14 20 25 23 28 27 20	U 0 0 0 0 0 0 0 0 0	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EB 0 0 0 0 0 1 1 1 1 1 0 0 0 0	0 0 0 1 1 1 1 0 0	0 0 0 1 1 1 1 1 0 0 2 1	0 11 17 25 43 49 60 65 55 54 55
Period Start 6:00:00 AM 6:15:00 AM 6:30:00 AM 7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM 8:00:00 AM 3:00:00 PM 3:15:00 PM 3:30:00 PM	7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM 8:00:00 AM 8:15:00 AM 8:45:00 AM 9:00:00 PM 4:15:00 PM 4:45:00 PM	North Approact U R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n Flinders Hi SB 0 0 2 2 2 2 2 1 1 1 2 2 2	bighway L 0 8 10 13 24 24 30 32 25 16 20 19 20	U 0 0 1 1 1 1 1 1 1 1 1 1	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 2 1 1 1 1 1 1	U 0 0 0 0 0 1 2 2 3 3 3 0 0 0 0 1	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NB 0 1 1 2 2 1 1 0 2 2 1 1 1	L 0 3 3 5 10 14 20 25 23 28 27 20 15	0 0 0 0 0 0 0 0 0 0 0 0	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EB 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0	0 0 0 1 1 1 1 0 0 0	0 0 0 1 1 1 1 0 0 2 1	0 11 17 25 43 49 60 65 55 54 55 43 40
Period Start 6:00:00 AM 6:15:00 AM 6:30:00 AM 7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM 8:00:00 AM 3:00:00 PM 3:15:00 PM 3:30:00 PM 4:00:00 PM	7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM 8:00:00 AM 8:15:00 AM 8:45:00 AM 9:00:00 AM 4:00:00 PM 4:15:00 PM 4:45:00 PM 5:00:00 PM	North Approact U R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n Flinders Hi SB 0 0 0 2 2 2 2 2 1 1 1 2 2 2	lighway L 0 8 10 13 24 24 30 32 25 16 20 19 20 22	U 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 2 1 1 1 1 1 1 1 1	U 0 0 0 0 0 1 2 2 3 3 3 0 0 0 0 1 2 2	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NB 0 0 1 1 2 2 1 1 0 2 2 1 1 1 1 1 1	L 0 3 3 5 10 14 20 25 23 28 27 20 15 18	U 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EB 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 1 0 0 0 0	0 0 0 1 1 1 1 0 0 2 1 0	0 11 17 25 43 49 60 65 55 54 43 40 47
Period Start 6:00:00 AM 6:15:00 AM 6:30:00 AM 7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM 3:00:00 PM 3:15:00 PM 3:45:00 PM 4:00:00 PM	7:00:00 AM 7:15:00 AM 7:30:00 AM 8:00:00 AM 8:00:00 AM 8:30:00 AM 8:45:00 AM 9:00:00 AM 4:00:00 PM 4:30:00 PM 4:30:00 PM 5:00:00 PM 5:15:00 PM	North Approact U R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n Flinders Hi SB 0 0 0 2 2 2 2 2 1 1 1 2 2 2 1 1 1 1	L 0 8 10 13 24 24 30 32 25 16 20 19 20 22 13	U 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 2 2 2	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 1 2 1 1 1 1 1 1 1 1 0 0	U 0 0 0 0 0 1 2 2 2 3 3 0 0 0 0 1 2 2 2 2	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NB 0 0 1 1 1 2 2 2 1 1 1 0 2 2 1 1 1 1 1 1	0 3 3 5 10 14 20 25 23 28 27 20 15 18	U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EB 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0	0 0 0 1 1 1 1 0 0 0 0 0	0 0 0 1 1 1 1 0 0 2 1 0 0	0 11 17 25 43 49 60 65 55 54 55 43 40 47 34
Period Start 6:00:00 AM 6:15:00 AM 6:30:00 AM 7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM 8:00:00 AM 3:00:00 PM 3:15:00 PM 3:30:00 PM 4:00:00 PM	7:00:00 AM 7:15:00 AM 7:30:00 AM 7:45:00 AM 8:00:00 AM 8:15:00 AM 8:45:00 AM 9:00:00 AM 4:00:00 PM 4:30:00 PM 4:45:00 PM 5:00:00 PM 5:30:00 PM	North Approact U R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n Flinders Hi SB 0 0 0 2 2 2 2 2 1 1 1 2 2 2	lighway L 0 8 10 13 24 24 30 32 25 16 20 19 20 22	U 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 2 1 1 1 1 1 1 1 1	U 0 0 0 0 0 1 2 2 3 3 3 0 0 0 0 1 2 2	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NB 0 0 1 1 2 2 1 1 0 2 2 1 1 1 1 1 1	L 0 3 3 5 10 14 20 25 23 28 27 20 15 18	U 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EB 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 1 0 0 0 0	0 0 0 1 1 1 1 0 0 2 1 0	0 11 17 25 43 49 60 65 55 54 43 40 47

Ti	me		tal Hourly Vel orth Approach			East	Approach W	Voodstock Gi	ru Road	Sout	h Approach	Flinders Hig	ghway	West	: Approach	Glenn Road				
Pe	eriod Start	Period End U	R	SB	L	U	R	WB	L	U	R	NB	L	U	R	EB	L	To	otal 1 hr Tota	al network 1 hr
	6:00:00 AM	7:00:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6:15:00 AM	7:15:00 AM	0	4	25	4	0	2	0	2	0	3	18	0	0	0	0	4	62	62
	6:30:00 AM	7:30:00 AM	0	10	49	5	0	10	0	3	0	6	43	4	0	2	0	8	140	140
	6:45:00 AM	7:45:00 AM	0	10	77	8	0	21	1	4	0	6	61	4	0	4	3	10	209	209
	7:00:00 AM	8:00:00 AM	0	13	112	11	0	26	2	9	0	11	85	8	0	4	3	13	297	297
	7:15:00 AM	8:15:00 AM	0	10	116	8	0	26	4	9	0	13	89	9	0	6	5	11	306	306
	7:30:00 AM	8:30:00 AM	0	6	118	8	0	20	6	9	0	11	92	7	0	4	5	8	294	294
	7:45:00 AM	8:45:00 AM	0	6	124	12	0	13	5	11	0	11	97	7	0	4	2	7	299	299
	8:00:00 AM	9:00:00 AM	0	8	111	10	0	11	4	10	0	9	99	5	0	5	2	5	279	279
																		To	otal 1 hr Tota	al network 1 hr
	3:00:00 PM	4:00:00 PM	0	9	104	19	0	8	1	5	0	8	108	4	0	3	2	8	279	279
	3:15:00 PM		0	9	99	22	0	9	2	5	0	8	106	3	0	3	0	5	271	271
	3:30:00 PM		0	6	101	21	0	11	2	4	0	10	97	2	0	6	2	3	265	265
	3:45:00 PM	4:45:00 PM	0	8	105	19	0	7	3	7	0	9	96	4	0	8	4	4	274	274
	4:00:00 PM		0	10	113	27	0	13	3	7	0	8	84	4	0	8	5	5	287	287
	4:15:00 PM		0	10	84	20	0	12	2	6	0	7	60	4	0	5	5	3	218	218
	4:30:00 PM		0	9	55	16	0	9	2	6	0	3	38	4	0	2	3	2	149	149
	4:45:00 PM		0	3	27	11	0	9	1	1	0	2	19	2	0	0	1	1	77	77
	5:00:00 PM		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_																				
Pe	eak Calculatio		orth Approach	Elizada de 100		F	A	Voodstock Gir	Dl	C+		Flinders Hig	-le	14/	Approach	Cl D l		-	otal volume	
/oh: D	eak Start	Peak End U	rtii Approacii R	SB	griway	L L L	Approach v	WB	ru Koau	IJ	n Approach R	NB	griway	U	. Approach R	EB			eak hour	
.V	7:15:00 AM		- "		00	7		26	2	7			75	9						
	4:00:00 PM		0	8	92		0	13	3	5	0	11 7	75 66	4	0	5	4	10 5	257 Ligh	
.V			0		91	25	0								0	8			240 Ligh	
HV.	7:15:00 AM		0	2	24	1	0	0	1	2	0	2	14	0	0	1	1	1	49 Hea	•
١V	4:00:00 PM		0	1	22	2	0	0	0	2	0	1	18	0	0	0	1	0	47 Hea	
[7:15:00 AM		0	10	116	8	0	26	4	9	0	13	89	9	0	6	5	11	306 Tota	
Г	4:00:00 PM	5:00:00 PM	0	10	113	27	0	13	3	7	0	8	84	4	0	8	5	5	287 Tota	11
3	7:15:00 AM	8:15:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 Bus	es

Attachment D

SIDRA layout and movement summary

V Site: [1iA] Flinders Hwy/Glenn Ba 2027 AM (Baseline 2027)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Project Green Poly Site Category: (None) Give-Way (Two-Way)

Site Scenario: 1 | Local Volumes

Vehic	cle Mo	ovement	t Performa	nce									
Mov	Turn	Mov	Demand	Arrival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Number	Aver.
ID		Class	Flows	Flows	Satn	Delay	Service	Que	eue	Qued	Stop o	of Cycles	Speed
			[Total HV]	[Total HV]				[Veh.	Dist]		Rate t	o Depart	
			veh/h %	veh/h %	v/c	sec		veh	m				km/h
South	: Flind	lers High	way										
1	L2	All MCs	9 0.0	9 0.0	0.005	7.8	LOSA	0.0	0.0	0.00	0.66	0.00	95.3
2	T1	All MCs	99 16.0	99 16.0	0.056	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	100.0
3	R2	All MCs	15 14.3	15 14.3	0.013	8.9	LOSA	0.0	0.4	0.26	0.60	0.26	93.0
Appro	ach		123 14.5	123 14.5	0.056	1.7	NA	0.0	0.4	0.03	0.12	0.03	98.7
East:	Wood	stock-Gir	u Road										
4	L2	All MCs	9 22.2	9 22.2	0.076	8.5	LOS A	0.2	1.8	0.01	0.64	0.01	100.5
5	T1	All MCs	4 25.0	4 25.0	0.076	9.1	LOS A	0.2	1.8	0.01	0.64	0.01	16.5
6	R2	All MCs	28 0.0	28 0.0	0.076	8.3	LOS A	0.2	1.8	0.01	0.64	0.01	16.7
Appro	ach		42 7.5	42 7.5	0.076	8.4	LOS A	0.2	1.8	0.01	0.64	0.01	37.8
North	: Flind	ers Highv	vay										
7	L2	All MCs	8 12.5	8 12.5	0.005	8.2	LOS A	0.0	0.0	0.00	0.66	0.00	69.3
8	T1	All MCs	127 20.7	127 20.7	0.074	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	100.0
9	R2	All MCs	11 20.0	11 20.0	0.009	9.2	LOSA	0.0	0.3	0.23	0.59	0.23	64.7
Appro	ach		146 20.1	146 20.1	0.074	1.1	NA	0.0	0.3	0.02	0.08	0.02	98.9
West:	Glenr	n Road											
10	L2	All MCs	13 8.3	13 8.3	0.007	8.9	LOS A	0.0	0.0	0.00	0.64	0.00	70.3
11	T1	All MCs	6 16.7	6 16.7	0.029	15.2	LOS B	0.1	0.8	0.39	0.86	0.39	18.5
12	R2	All MCs	6 16.7	6 16.7	0.029	15.9	LOS B	0.1	0.8	0.47	0.90	0.47	98.6
Appro	ach		25 12.5	25 12.5	0.029	12.2	LOS A	0.1	8.0	0.21	0.76	0.21	65.1
All Ve	hicles		337 15.9	337 15.9	0.076	3.1	NA	0.2	1.8	0.04	0.22	0.04	89.9

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Monday, July 28, 2025 9:28:26 PM Project: \tsclient\X\2025\E250401 - Project Green Poly MCU DAs\Technical studies\Transport\SIDRA\BESS\E250401 PGP BESS_SIDRA_V0-2_CC.sipx

Site: [1iP] Flinders Hwy/Glenn Ba 2027 PM (Baseline 2027)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Project Green Poly Site Category: (None) Give-Way (Two-Way)

Site Scenario: 1 | Local Volumes

Vehi	cle Mo	ovemen	t Performa	nce									
Mov	Turn	Mov	Demand	Arrival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Number	Aver.
ID		Class	Flows	Flows	Satn	Delay	Service	Que	eue	Qued	Stop	of Cycles	Speed
			[Total HV]	[Total HV]				[Veh.	Dist]		Rate t	o Depart	
			veh/h %	veh/h %	v/c	sec		veh	m				km/h
South	: Flind	lers High	way										
1	L2	All MCs	4 0.0	4 0.0	0.002	7.8	LOS A	0.0	0.0	0.00	0.66	0.00	95.3
2	T1	All MCs	93 21.6	93 21.6	0.054	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	100.0
3	R2	All MCs	8 12.5	8 12.5	0.007	8.9	LOSA	0.0	0.2	0.27	0.60	0.27	93.1
Appro	ach		105 20.0	105 20.0	0.054	1.1	NA	0.0	0.2	0.02	0.07	0.02	99.2
East:	Wood	stock-Gir	u Road										
4	L2	All MCs	7 28.6	7 28.6	0.042	8.6	LOS A	0.1	0.9	0.01	0.64	0.01	100.0
5	T1	All MCs	3 0.0	3 0.0	0.042	8.4	LOS A	0.1	0.9	0.01	0.64	0.01	16.8
6	R2	All MCs	15 0.0	15 0.0	0.042	8.2	LOSA	0.1	0.9	0.01	0.64	0.01	16.7
Appro	ach		25 8.3	25 8.3	0.042	8.3	LOSA	0.1	0.9	0.01	0.64	0.01	43.8
North	: Flind	ers Highv	vay										
7	L2	All MCs	29 7.1	29 7.1	0.017	8.0	LOS A	0.0	0.0	0.00	0.66	0.00	71.1
8	T1	All MCs	124 19.5	124 19.5	0.072	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	100.0
9	R2	All MCs	11 10.0	11 10.0	0.009	8.9	LOS A	0.0	0.3	0.21	0.59	0.21	66.3
Appro	ach		164 16.7	164 16.7	0.072	2.0	NA	0.0	0.3	0.01	0.16	0.01	98.1
West	Glenr	n Road											
10	L2	All MCs	6 0.0	6 0.0	0.003	8.7	LOS A	0.0	0.0	0.00	0.64	0.00	73.7
11	T1	All MCs	6 16.7	6 16.7	0.031	15.2	LOS B	0.1	0.8	0.37	0.85	0.37	16.3
12	R2	All MCs	8 0.0	8 0.0	0.031	13.6	LOSA	0.1	0.8	0.45	0.89	0.45	100.2
Appro	ach		21 5.0	21 5.0	0.031	12.6	LOS A	0.1	8.0	0.29	0.81	0.29	67.4
All Ve	hicles		316 16.3	316 16.3	0.072	2.9	NA	0.1	0.9	0.03	0.21	0.03	92.4

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Monday, July 28, 2025 9:28:28 PM Project: \tsclient\X\2025\E250401 - Project Green Poly MCU DAs\Technical studies\Transport\SIDRA\BESS\E250401 PGP BESS_SIDRA_V0-2_CC.sipx

igvee Site: [1iiA] Flinders Hwy/Glenn Pro 2027 AM (Baseline

+Project)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Project Green Poly Site Category: (None) Give-Way (Two-Way)

Site Scenario: 1 | Local Volumes

Vehi	cle Mo	ovemen	t Performa	nce									
Mov	Turn	Mov	Demand	Arrival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Number	Aver.
ID		Class	Flows	Flows	Satn	Delay	Service	Que	eue	Qued	Stop	of Cycles	Speed
			[Total HV]	[Total HV]				[Veh.	Dist]		Rate t	o Depart	
			veh/h %	veh/h %	v/c	sec		veh	m				km/h
South	n: Flind	lers High	way										
1	L2	All MCs	9 0.0	9 0.0	0.005	7.8	LOS A	0.0	0.0	0.00	0.66	0.00	95.3
2	T1	All MCs	99 16.0	99 16.0	0.056	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	100.0
3	R2	All MCs	15 14.3	15 14.3	0.013	8.9	LOSA	0.0	0.4	0.26	0.60	0.26	93.0
Appro	oach		123 14.5	123 14.5	0.056	1.7	NA	0.0	0.4	0.03	0.12	0.03	98.7
East:	Wood	stock-Gir	u Road										
4	L2	All MCs	9 22.2	9 22.2	0.091	8.5	LOS A	0.3	2.2	0.02	0.64	0.02	100.5
5	T1	All MCs	4 25.0	4 25.0	0.091	9.2	LOS A	0.3	2.2	0.02	0.64	0.02	16.5
6	R2	All MCs	28 0.0	28 0.0	0.091	8.4	LOS A	0.3	2.2	0.02	0.64	0.02	16.7
Appro	oach		42 7.5	42 7.5	0.091	8.5	LOS A	0.3	2.2	0.02	0.64	0.02	37.8
North	: Flind	ers Highv	vay										
7	L2	All MCs	8 12.5	8 12.5	0.005	8.2	LOS A	0.0	0.0	0.00	0.66	0.00	69.3
8	T1	All MCs	127 20.7	127 20.7	0.074	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	100.0
9	R2	All MCs	114 6.5	114 6.5	0.091	8.9	LOSA	0.4	2.8	0.23	0.61	0.23	66.8
Appro	oach		249 13.9	249 13.9	0.091	4.3	NA	0.4	2.8	0.11	0.30	0.11	94.3
West	: Glenr	n Road											
10	L2	All MCs	18 35.3	18 35.3	0.011	9.5	LOS A	0.0	0.0	0.00	0.62	0.00	63.2
11	T1	All MCs	6 16.7	6 16.7	0.036	17.1	LOS B	0.1	0.9	0.44	0.89	0.44	18.3
12	R2	All MCs	6 16.7	6 16.7	0.036	18.6	LOS B	0.1	0.9	0.53	0.94	0.53	97.7
Appro	oach		31 27.6	31 27.6	0.036	13.0	LOSA	0.1	0.9	0.20	0.74	0.20	63.3
All Ve	ehicles		445 14.4	445 14.4	0.091	4.6	NA	0.4	2.8	0.08	0.31	0.08	88.1

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Monday, July 28, 2025 9:28:29 PM Project: \tsclient\X\2025\E250401 - Project Green Poly MCU DAs\Technical studies\Transport\SIDRA\BESS\E250401 PGP BESS_SIDRA_V0-2_CC.sipx

V Site: [1iiP] Flinders Hwy/Glenn Pro 2027 PM (Baseline

+Project)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Project Green Poly Site Category: (None) Give-Way (Two-Way)

Site Scenario: 1 | Local Volumes

Vehi	cle M	ovement	t Performa	nce									
Mov	Turn	Mov	Demand	Arrival	Deg.	Aver.	Level of	95% Ba	ack Of	Prop.	Eff.	Number	Aver.
ID		Class	Flows	Flows	Satn	Delay	Service	Que	eue	Qued	Stop	of Cycles	Speed
			[Total HV]	[Total HV]				[Veh.	Dist]		Rate t	o Depart	
			veh/h %	veh/h %	v/c	sec		veh	m				km/h
South	: Flind	lers High	way										
1	L2	All MCs	4 0.0	4 0.0	0.002	7.8	LOS A	0.0	0.0	0.00	0.66	0.00	95.3
2	T1	All MCs	93 21.6	93 21.6	0.054	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	100.0
3	R2	All MCs	8 12.5	8 12.5	0.007	8.9	LOSA	0.0	0.2	0.27	0.60	0.27	93.1
Appro	ach		105 20.0	105 20.0	0.054	1.1	NA	0.0	0.2	0.02	0.07	0.02	99.2
East:	Wood	stock-Gir	u Road										
4	L2	All MCs	7 28.6	7 28.6	0.048	8.6	LOS A	0.1	1.1	0.01	0.64	0.01	100.0
5	T1	All MCs	3 0.0	3 0.0	0.048	8.4	LOS A	0.1	1.1	0.01	0.64	0.01	16.8
6	R2	All MCs	15 0.0	15 0.0	0.048	8.3	LOSA	0.1	1.1	0.01	0.64	0.01	16.7
Appro	ach		25 8.3	25 8.3	0.048	8.4	LOS A	0.1	1.1	0.01	0.64	0.01	43.8
North	: Flind	ers Highv	vay										
7	L2	All MCs	29 7.1	29 7.1	0.017	8.0	LOS A	0.0	0.0	0.00	0.66	0.00	71.1
8	T1	All MCs	124 19.5	124 19.5	0.072	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	100.0
9	R2	All MCs	16 40.0	16 40.0	0.015	9.8	LOSA	0.1	0.5	0.23	0.59	0.23	61.8
Appro	ach		169 19.3	169 19.3	0.072	2.3	NA	0.1	0.5	0.02	0.17	0.02	97.6
West	Glenr	n Road											
10	L2	All MCs	109 4.8	109 4.8	0.060	8.8	LOS A	0.0	0.0	0.00	0.63	0.00	71.3
11	T1	All MCs	6 16.7	6 16.7	0.031	15.4	LOS B	0.1	8.0	0.38	0.86	0.38	16.3
12	R2	All MCs	8 0.0	8 0.0	0.031	13.7	LOSA	0.1	8.0	0.45	0.89	0.45	100.1
Appro	ach		124 5.1	124 5.1	0.060	9.5	LOSA	0.1	8.0	0.05	0.66	0.05	69.5
All Ve	hicles		424 14.6	424 14.6	0.072	4.5	NA	0.1	1.1	0.03	0.32	0.03	90.7

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Monday, July 28, 2025 9:28:30 PM Project: \tsclient\X\2025\E250401 - Project Green Poly MCU DAs\Technical studies\Transport\SIDRA\BESS\E250401 PGP BESS_SIDRA_V0-2_CC.sipx

V Site: [1iiiA] Flinders Hwy/Glenn Cu 2027 AM (Baseline+Project

+Cumulative)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Project Green Poly Site Category: (None) Give-Way (Two-Way)

Site Scenario: 1 | Local Volumes

Vehic	cle M	ovemen	t Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows	Arrival Flows	Deg. Satn	Aver. Delay	Level of Service	95% Ba Que	eue	Prop. Qued	Stop	Number of Cycles	Aver. Speed
			[Total HV] veh/h %	veh/h %	v/c	sec		[Veh. veh	Dist]		Rate	o Depart	km/h
South	· Elind	lers High		ven/m 70	V/C	Sec	_	ven	m	_	_	_	KIII/II
1	L2	_	9 0.0	9 0.0	0.005	7.8	LOS A	0.0	0.0	0.00	0.66	0.00	95.3
2	T1	All MCs	107 16.7	107 16.7	0.003	0.1	LOSA	0.0	0.0	0.00	0.00	0.00	100.0
3 Appre	R2	All MCs	15 14.3 132 15.2	15 14.3 132 15.2	0.013	9.0	LOS A NA	0.0	0.4	0.27	0.60	0.27	93.0
Appro	acn		132 13.2	132 13.2	0.061	1.0	INA	0.0	0.4	0.03	0.11	0.03	90.0
East:	Wood	stock-Gir	u Road										
4	L2	All MCs	9 22.2	9 22.2	0.168	8.5	LOSA	0.6	4.3	0.03	0.63	0.03	100.1
5	T1	All MCs	4 25.0	4 25.0	0.168	10.7	LOS A	0.6	4.3	0.03	0.63	0.03	16.4
6	R2	All MCs	28 0.0	28 0.0	0.168	9.6	LOSA	0.6	4.3	0.03	0.63	0.03	16.7
Appro	ach		42 7.5	42 7.5	0.168	9.5	LOSA	0.6	4.3	0.03	0.63	0.03	37.7
N141-	. =::	I E											
		ers Highv	•	- 10 5	0.005	0.0	1.00.4	2.0	0.0	0.00	0.00	0.00	00.0
7		All MCs	8 12.5	8 12.5	0.005	8.2	LOSA	0.0	0.0	0.00	0.66	0.00	69.3
8	T1	All MCs	140 20.3	140 20.3	0.081	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	100.0
9		All MCs	391 4.0	391 4.0	0.313	9.0	LOS A	1.6	11.5	0.30	0.61	0.30	66.8
Appro	ach		539 8.4	539 8.4	0.313	6.7	NA	1.6	11.5	0.22	0.45	0.22	87.4
West:	Glenr	n Road											
10	L2		27 46.2	27 46.2	0.019	9.8	LOS A	0.0	0.0	0.00	0.62	0.00	60.7
11	T1	All MCs	6 16.7	6 16.7	0.078	27.9	LOS B	0.2	1.8	0.65	0.95	0.65	17.3
12	R2	All MCs	6 16.7	6 16.7	0.078	33.9	LOS C	0.2	1.8	0.78	1.00	0.78	92.9
Appro			40 36.8	40 36.8	0.078	16.4	LOS B	0.2	1.8	0.22	0.73	0.22	60.3
All Ve	hicles		753 11.0	753 11.0	0.313	6.5	NA	1.6	11.5	0.17	0.42	0.17	85.3

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Monday, July 28, 2025 9:28:31 PM Project: \tsclient\X\2025\E250401 - Project Green Poly MCU DAs\Technical studies\Transport\SIDRA\BESS\E250401 PGP BESS_SIDRA_V0-2_CC.sipx

igvee Site: [1iiiP] Flinders Hwy/Glenn Cu 2027 PM (Baseline+Project

+Cumulative)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

Project Green Poly Site Category: (None) Give-Way (Two-Way)

Site Scenario: 1 | Local Volumes

Vehi	cle M	ovemen	t Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV]	Arrival Flows [Total HV]	Deg. Satn	Aver. Delay	Level of Service	95% B Que [Veh.		Prop. Qued	Stop	Number of Cycles to Depart	Aver. Speed
				veh/h %	v/c	sec		veh	m				km/h
		lers High											
1	L2	All MCs	4 0.0	4 0.0	0.002	7.8	LOS A	0.0	0.0	0.00	0.66	0.00	95.3
2	T1	All MCs	105 21.0	105 21.0	0.061	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	100.0
3	R2	All MCs	8 12.5	8 12.5	0.007	9.0	LOSA	0.0	0.2	0.28	0.60	0.28	93.0
Appro	oach		118 19.6	118 19.6	0.061	1.0	NA	0.0	0.2	0.02	0.07	0.02	99.3
East:	Wood	stock-Gir	u Road										
4	L2	All MCs	7 28.6	7 28.6	0.079	8.6	LOS A	0.2	1.8	0.02	0.64	0.02	99.9
5	T1	All MCs	3 0.0	3 0.0	0.079	8.5	LOS A	0.2	1.8	0.02	0.64	0.02	16.7
6	R2	All MCs	15 0.0	15 0.0	0.079	8.9	LOS A	0.2	1.8	0.02	0.64	0.02	16.7
Appro	ach		25 8.3	25 8.3	0.079	8.7	LOS A	0.2	1.8	0.02	0.64	0.02	43.7
North	: Flind	ers Highv	vay										
7	L2	All MCs	29 7.1	29 7.1	0.017	8.0	LOS A	0.0	0.0	0.00	0.66	0.00	71.1
8	T1	All MCs	133 19.8	133 19.8	0.077	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	100.0
9	R2	All MCs	20 47.4	20 47.4	0.020	10.1	LOS A	0.1	0.8	0.25	0.59	0.25	60.7
Appro	ach		182 20.8	182 20.8	0.077	2.4	NA	0.1	8.0	0.03	0.17	0.03	97.5
West	Glenr	n Road											
10	L2	All MCs	377 2.5	377 2.5	0.206	8.8	LOS A	0.0	0.0	0.00	0.64	0.00	71.9
11	T1	All MCs	6 16.7	6 16.7	0.033	15.9	LOS B	0.1	8.0	0.39	0.86	0.39	16.3
12	R2	All MCs	8 0.0	8 0.0	0.033	14.2	LOSA	0.1	8.0	0.47	0.90	0.47	99.9
Appro	ach		392 2.7	392 2.7	0.206	9.0	LOSA	0.1	0.8	0.02	0.64	0.02	71.1
All Ve	hicles		717 10.3	717 10.3	0.206	6.0	NA	0.2	1.8	0.02	0.43	0.02	88.5

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Monday, July 28, 2025 9:28:32 PM Project: \tsclient\X\2025\E250401 - Project Green Poly MCU DAs\Technical studies\Transport\SIDRA\BESS\E250401 PGP BESS_SIDRA_V0-2_CC.sipx

Attachment E

SIDRA level crossing assessment

Site: [1 (2)] Railway level crossing (2027 Baseline scenario PM peak)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 1800.0 seconds (Site User-Given Phase Times)

Site Scenario: 1 | Local Volumes

Vehic	cle Mo	ovement	Performa	nce									
Mov	Turn	Mov	Demand	Arrival	Deg.	Aver.	Level of	95% Ba	ack Of	Prop.	Eff.	Number	Aver.
ID		Class	Flows	Flows	Satn	Delay	Service	Que	eue	Qued	Stop o	of Cycles	Speed
			[Total HV]	[Total HV]				[Veh.	Dist]		Rate t	o Depart	
			veh/h %	veh/h %	v/c	sec		veh	m				km/h
South	: Railv	way											
2	T1	All MCs	1 100.	1 100.	* 0.011	732.1	LOS F	0.7	19.1	0.91	0.59	0.91	4.6
			0	0									
Appro	ach		1 100.	1 100.	0.011	732.1	LOS F	0.7	19.1	0.91	0.59	0.91	4.6
			0	0									
East:	Jones	Road											
5	T1	All MCs	18 5.9	18 5.9	0.011	13.0	LOS A	1.8	13.0	0.13	0.10	0.13	42.4
Appro	ach		18 5.9	18 5.9	0.011	13.0	LOS A	1.8	13.0	0.13	0.10	0.13	42.4
North:	Railw	vay											
8	T1	All MCs	0 100.	0 100.	0.001	727.0	LOS F	0.1	2.1	0.90	0.51	0.90	4.6
			0	0									
Appro	ach		0 100.	0 100.	0.001	727.0	LOS F	0.1	2.1	0.90	0.51	0.90	4.6
			0	0									
West:	Jones	s Road											
11	T1	All MCs	19 5.6	19 5.6	* 0.012	13.0	LOSA	1.9	13.7	0.13	0.10	0.13	42.4
Appro	ach		19 5.6	19 5.6	0.012	13.0	LOSA	1.9	13.7	0.13	0.10	0.13	42.4
All Ve	hicles		38 8.3	38 8.3	0.012	32.9	LOS C	1.9	19.1	0.15	0.11	0.15	34.5

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Thursday, June 19, 2025 5:47:50 PM

Project: \tsclient\X\2025\E250401 - Project Green Poly MCU DAs\Technical studies\Transport\SIDRA\BESS\Level crossing\E250401_PGP

BESS Level Crossing v0.3 CC.sipx

Site: [1 (3)] Railway level crossing (2027 Baseline +

Construction scenario AM peak)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 1800.0 seconds (Site User-Given Phase Times)

Site Scenario: 1 | Local Volumes

Vehic	cle Mo	ovement	Performa	nce									
Mov	Turn	Mov	Demand	Arrival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Number	Aver.
ID		Class	Flows	Flows	Satn	Delay	Service	Que	eue	Qued	Stop o	of Cycles	Speed
			[Total HV]	[Total HV]				[Veh.	Dist]		Rate t	o Depart	
			veh/h %	veh/h %	v/c	sec		veh	m				km/h
South	: Railv	way											
2	T1	All MCs	2 100.	2 100.	* 0.023	734.8	LOS F	1.5	40.5	0.92	0.62	0.92	4.6
			0	0									
Appro	ach		2 100.	2 100.	0.023	734.8	LOS F	1.5	40.5	0.92	0.62	0.92	4.6
			0	0									
East:	Jones	Road											
5	T1	All MCs	127 6.6	127 6.6	* 0.079	13.8	LOS A	13.4	99.3	0.14	0.12	0.14	42.0
Appro	ach		127 6.6	127 6.6	0.079	13.8	LOSA	13.4	99.3	0.14	0.12	0.14	42.0
North	: Railw	vay											
8	T1	All MCs	0 100.	0 100.	0.001	727.0	LOS F	0.1	2.1	0.90	0.51	0.90	4.6
			0	0									
Appro	ach		0 100.	0 100.	0.001	727.0	LOS F	0.1	2.1	0.90	0.51	0.90	4.6
			0	0									
West:	Jones	s Road											
11	T1	All MCs	28 29.6	28 29.6	0.021	13.1	LOS A	2.8	24.9	0.13	0.10	0.13	42.4
Appro	ach		28 29.6	28 29.6	0.021	13.1	LOSA	2.8	24.9	0.13	0.10	0.13	42.4
All Ve	hicles		158 12.0	158 12.0	0.079	23.3	LOS B	13.4	99.3	0.15	0.12	0.15	37.9

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Thursday, June 19, 2025 5:47:51 PM

Project: \tsclient\X\2025\E250401 - Project Green Poly MCU DAs\Technical studies\Transport\SIDRA\BESS\Level crossing\E250401_PGP

BESS Level Crossing v0.3 CC.sipx

Site: [1 (4)] Railway level crossing (2027 Baseline +

Construction scenario PM peak)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 1800.0 seconds (Site User-Given Phase Times)

Site Scenario: 1 | Local Volumes

Vehic	cle Mo	ovement	Performa	nce									
Mov	Turn	Mov	Demand	Arrival	Deg.	Aver.	Level of	95% Ba	ack Of	Prop.	Eff.	Number	Aver.
ID		Class	Flows	Flows	Satn	Delay	Service	Que	eue	Qued	Stop o	of Cycles	Speed
			[Total HV]	[Total HV]				[Veh.	Dist]		Rate t	o Depart	
			veh/h %	veh/h %	v/c	sec		veh	m				km/h
South	: Railv	way											
2	T1	All MCs	1 100.	1 100.	* 0.011	732.1	LOS F	0.7	19.1	0.91	0.59	0.91	4.6
			0	0									
Appro	ach		1 100.	1 100.	0.011	732.1	LOS F	0.7	19.1	0.91	0.59	0.91	4.6
			0	0									
East:	Jones	Road											
5	T1	All MCs	23 27.3	23 27.3	0.017	13.0	LOSA	2.3	19.9	0.13	0.10	0.13	42.4
Appro	ach		23 27.3	23 27.3	0.017	13.0	LOSA	2.3	19.9	0.13	0.10	0.13	42.4
North	: Railw	vay											
8	T1	All MCs	0 100.	0 100.	0.001	727.0	LOS F	0.1	2.1	0.90	0.51	0.90	4.6
			0	0									
Appro	ach		0 100.	0 100.	0.001	727.0	LOS F	0.1	2.1	0.90	0.51	0.90	4.6
			0	0									
West:	Jones	s Road											
11	T1	All MCs	122 5.2	122 5.2	* 0.075	13.8	LOSA	12.8	93.7	0.14	0.12	0.14	42.0
Appro	ach		122 5.2	122 5.2	0.075	13.8	LOSA	12.8	93.7	0.14	0.12	0.14	42.0
All Ve	hicles		146 9.4	146 9.4	0.075	18.8	LOS B	12.8	93.7	0.14	0.12	0.14	39.8

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Thursday, June 19, 2025 5:47:52 PM

Project: \tsclient\X\2025\E250401 - Project Green Poly MCU DAs\Technical studies\Transport\SIDRA\BESS\Level crossing\E250401_PGP

BESS Level Crossing v0.3 CC.sipx

Site: [1 (5)] Railway level crossing (2027 Baseline +

Construction + Cumulative scenario AM peak)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 1800.0 seconds (Site User-Given Phase Times)

Site Scenario: 1 | Local Volumes

Vehic	cle Mo	ovemen	t Performa	nce									
Mov	Turn	Mov	Demand	Arrival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Number	Aver.
ID		Class	Flows	Flows	Satn	Delay	Service	Que	eue	Qued	Stop o	of Cycles	Speed
			[Total HV]	[Total HV]				[Veh.	Dist]		Rate t	o Depart	
			veh/h %	veh/h %	v/c	sec		veh	m				km/h
South	: Railv	way											
2	T1	All MCs	2 100.	2 100.	* 0.023	734.8	LOS F	1.5	40.5	0.92	0.62	0.92	4.6
			0	0									
Appro	ach		2 100.	2 100.	0.023	734.8	LOS F	1.5	40.5	0.92	0.62	0.92	4.6
			0	0									
East:	Jones	Road											
5	T1	All MCs	404 4.2	404 4.2	* 0.245	16.4	LOS B	50.6	366.9	0.17	0.15	0.17	40.8
Appro	ach		404 4.2	404 4.2	0.245	16.4	LOS B	50.6	366.9	0.17	0.15	0.17	40.8
North	: Railw	vay											
8	T1	All MCs	0 100.	0 100.	0.001	727.0	LOS F	0.1	2.1	0.90	0.51	0.90	4.6
			0	0									
Appro	ach		0 100.	0 100.	0.001	727.0	LOS F	0.1	2.1	0.90	0.51	0.90	4.6
			0	0									
West:	Jones	s Road											
11	T1	All MCs	38 38.9	38 38.9	0.031	13.2	LOS A	3.8	35.7	0.13	0.11	0.13	42.3
Appro	ach		38 38.9	38 38.9	0.031	13.2	LOSA	3.8	35.7	0.13	0.11	0.13	42.3
All Ve	hicles		444 7.6	444 7.6	0.245	19.5	LOS B	50.6	366.9	0.17	0.15	0.17	39.4

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Monday, July 28, 2025 9:36:56 PM
Project: \tsclient\X\2025\E250401 - Project Green Poly MCU DAs\Technical studies\Transport\SIDRA\BESS\Level crossing\E250401_PGP
BESS Level Crossing v0.3 CC.sipx

Site: [1 (6)] Railway level crossing (2027 Baseline +

Construction + Cumulative scenario PM peak)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 1800.0 seconds (Site User-Given Phase Times)

Site Scenario: 1 | Local Volumes

Vehic	cle Mo	ovemen	Performa	nce									
Mov	Turn	Mov	Demand	Arrival	Deg.	Aver.	Level of	95% Ba	ack Of	Prop.	Eff.	Number	Aver.
ID		Class	Flows	Flows	Satn	Delay	Service	Que	eue	Qued	Stop o	of Cycles	Speed
			[Total HV]	[Total HV]				[Veh.	Dist]		Rate t	o Depart	
			veh/h %	veh/h %	v/c	sec		veh	m				km/h
South	: Railv	way											
2	T1	All MCs	1 100.	1 100.	* 0.011	732.1	LOS F	0.7	19.1	0.91	0.59	0.91	4.6
			0	0									
Appro	ach		1 100.	1 100.	0.011	732.1	LOS F	0.7	19.1	0.91	0.59	0.91	4.6
			0	0									
East:	Jones	Road											
5	T1	All MCs	27 38.5	27 38.5	0.022	13.1	LOS A	2.7	25.5	0.13	0.10	0.13	42.4
Appro	ach		27 38.5	27 38.5	0.022	13.1	LOSA	2.7	25.5	0.13	0.10	0.13	42.4
North:	: Railw	vay											
8	T1	All MCs	0 100.	0 100.	0.001	727.0	LOS F	0.1	2.1	0.90	0.51	0.90	4.6
			0	0									
Appro	ach		0 100.	0 100.	0.001	727.0	LOS F	0.1	2.1	0.90	0.51	0.90	4.6
			0	0									
West:	Jones	s Road											
11	T1	All MCs	389 2.7	389 2.7	* 0.233	16.2	LOS B	48.1	344.5	0.16	0.15	0.16	40.9
Appro	ach		389 2.7	389 2.7	0.233	16.2	LOS B	48.1	344.5	0.16	0.15	0.16	40.9
All Ve	hicles		418 5.3	418 5.3	0.233	17.8	LOS B	48.1	344.5	0.16	0.15	0.16	40.2

 $Site\ Level\ of\ Service\ (LOS)\ Method:\ Delay\ (NSW).\ Site\ LOS\ Method\ is\ specified\ in\ the\ Parameter\ Settings\ dialog\ (Options\ tab).$

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Monday, July 28, 2025 9:36:56 PM
Project: \tsclient\X\2025\E250401 - Project Green Poly MCU DAs\Technical studies\Transport\SIDRA\BESS\Level crossing\E250401_PGP
BESS Level Crossing v0.3 CC.sipx

Site: [1] Railway level crossing (2027 Baseline scenario AM

peak)

Output produced by SIDRA INTERSECTION Version: 10.0.5.217

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 1800.0 seconds (Site User-Given Phase Times)

Site Scenario: 1 | Local Volumes

Vehic	cle M	ovement	t Performa	nce									
Mov	Turn	Mov	Demand	Arrival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Number	Aver.
ID		Class	Flows	Flows	Satn	Delay	Service	Que	eue	Qued	Stop	of Cycles	Speed
			[Total HV]	[Total HV]				[Veh.	Dist]		Rate t	o Depart	
			veh/h %	veh/h %	v/c	sec		veh	m				km/h
South	: Railv	way											
2	T1	All MCs	2 100.	2 100.	* 0.023	734.8	LOS F	1.5	40.5	0.92	0.62	0.92	4.6
			0	0									
Appro	ach		2 100.	2 100.	0.023	734.8	LOS F	1.5	40.5	0.92	0.62	0.92	4.6
			0	0									
East:	Jones	Road											
5	T1	All MCs	24 13.0	24 13.0	* 0.016	13.0	LOS A	2.4	18.7	0.13	0.10	0.13	42.4
Appro	ach		24 13.0	24 13.0	0.016	13.0	LOSA	2.4	18.7	0.13	0.10	0.13	42.4
North:	: Railv	vay											
8	T1	All MCs	0 100.	0 100.	0.001	727.0	LOS F	0.1	2.1	0.90	0.51	0.90	4.6
			0	0									
Appro	ach		0 100.	0 100.	0.001	727.0	LOS F	0.1	2.1	0.90	0.51	0.90	4.6
			0	0									
West:	Jones	s Road											
11	T1	All MCs	23 13.6	23 13.6	0.015	13.0	LOSA	2.3	18.0	0.13	0.10	0.13	42.4
Appro	ach		23 13.6	23 13.6	0.015	13.0	LOSA	2.3	18.0	0.13	0.10	0.13	42.4
All Ve	hicles		49 17.0	49 17.0	0.023	43.7	LOS D	2.4	40.5	0.16	0.12	0.16	31.4

Site Level of Service (LOS) Method: Delay (NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

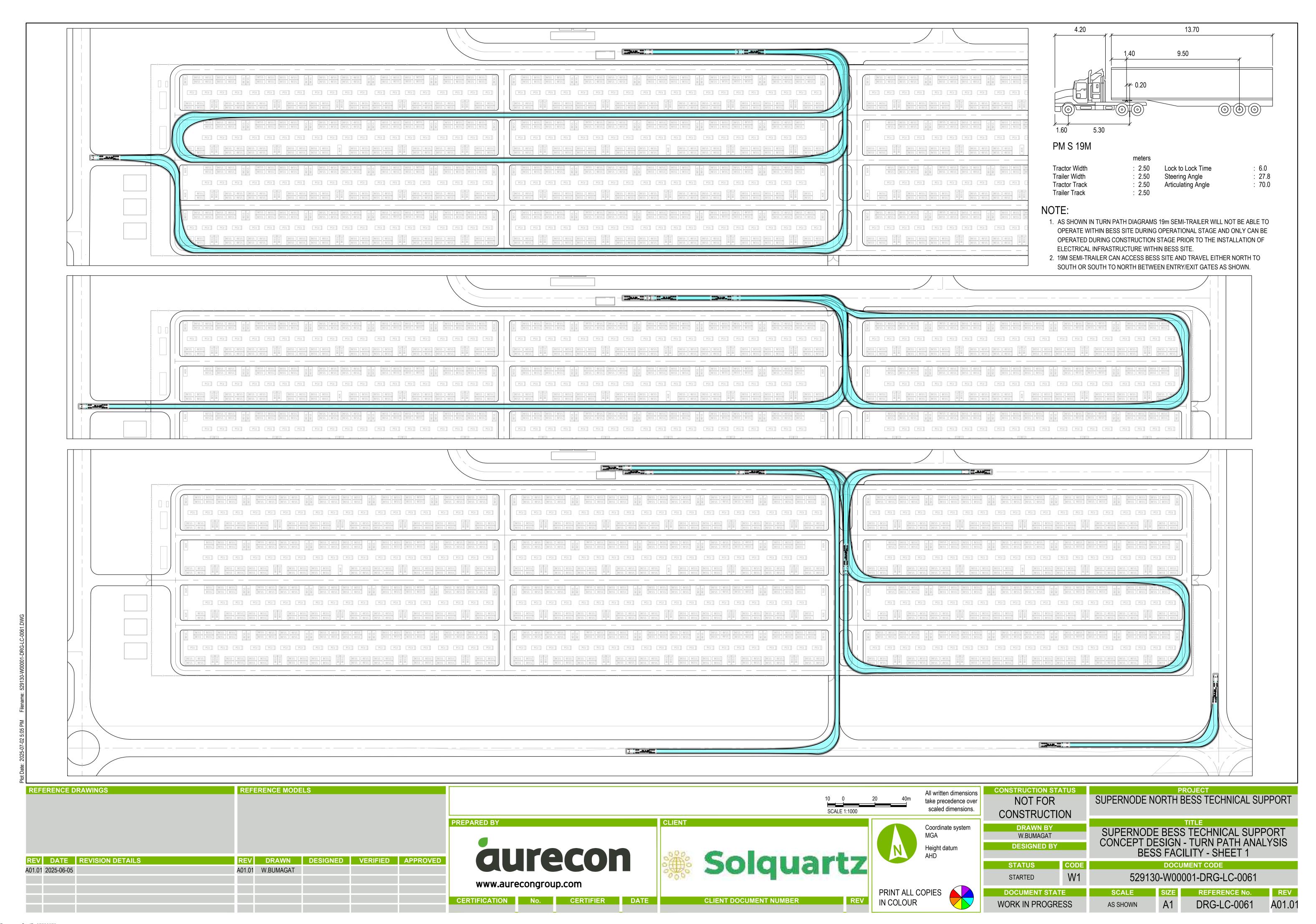
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

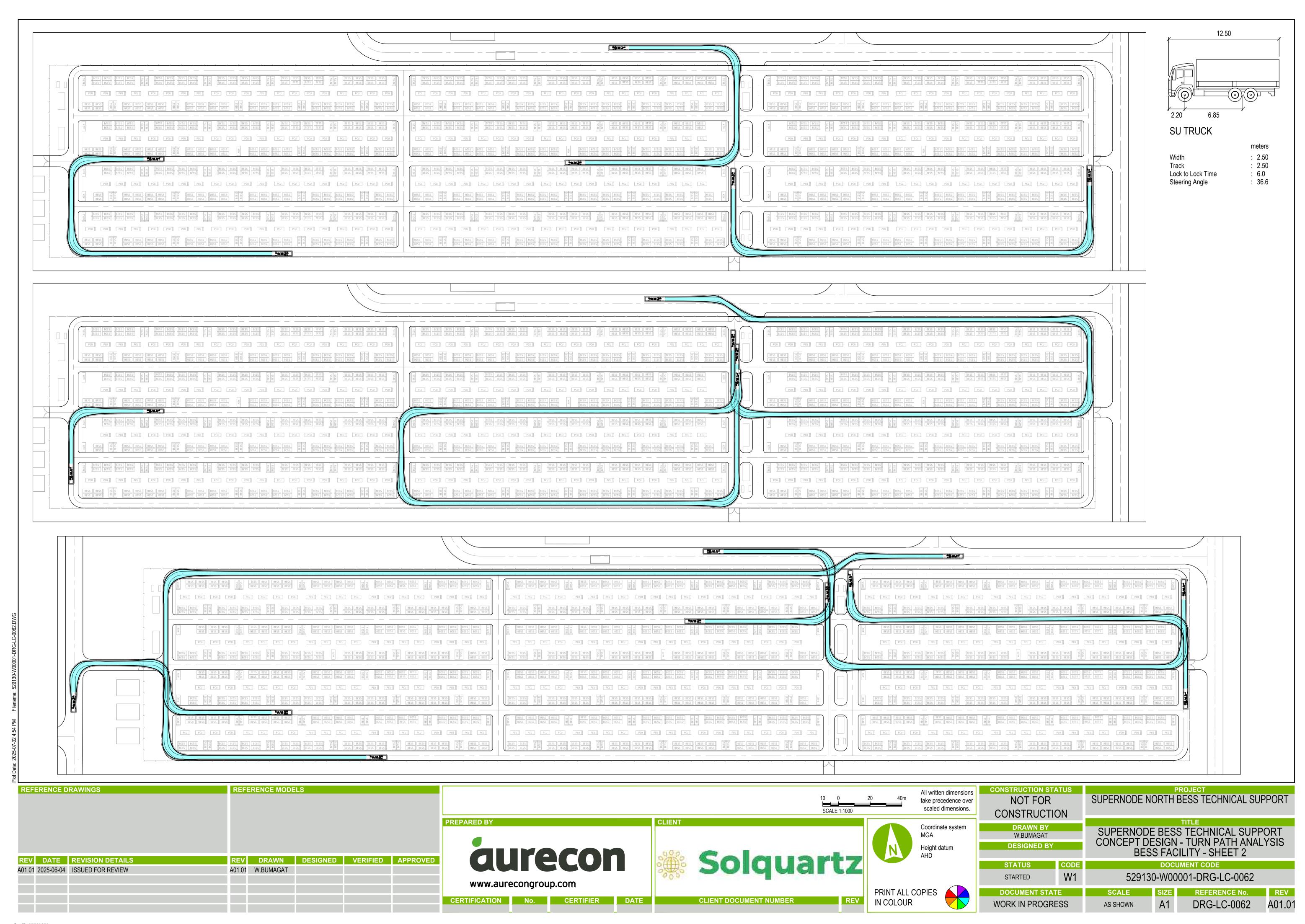
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

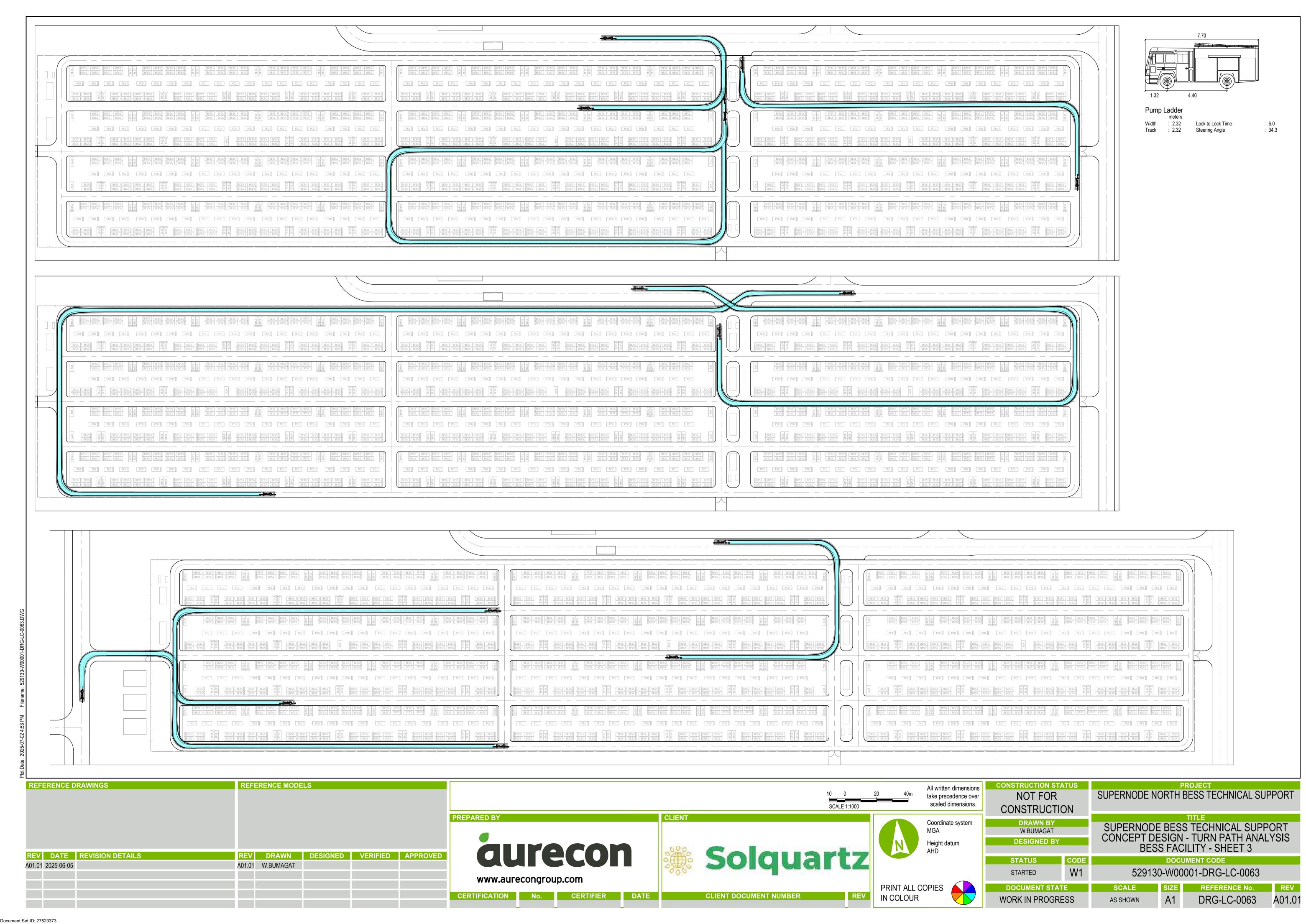
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

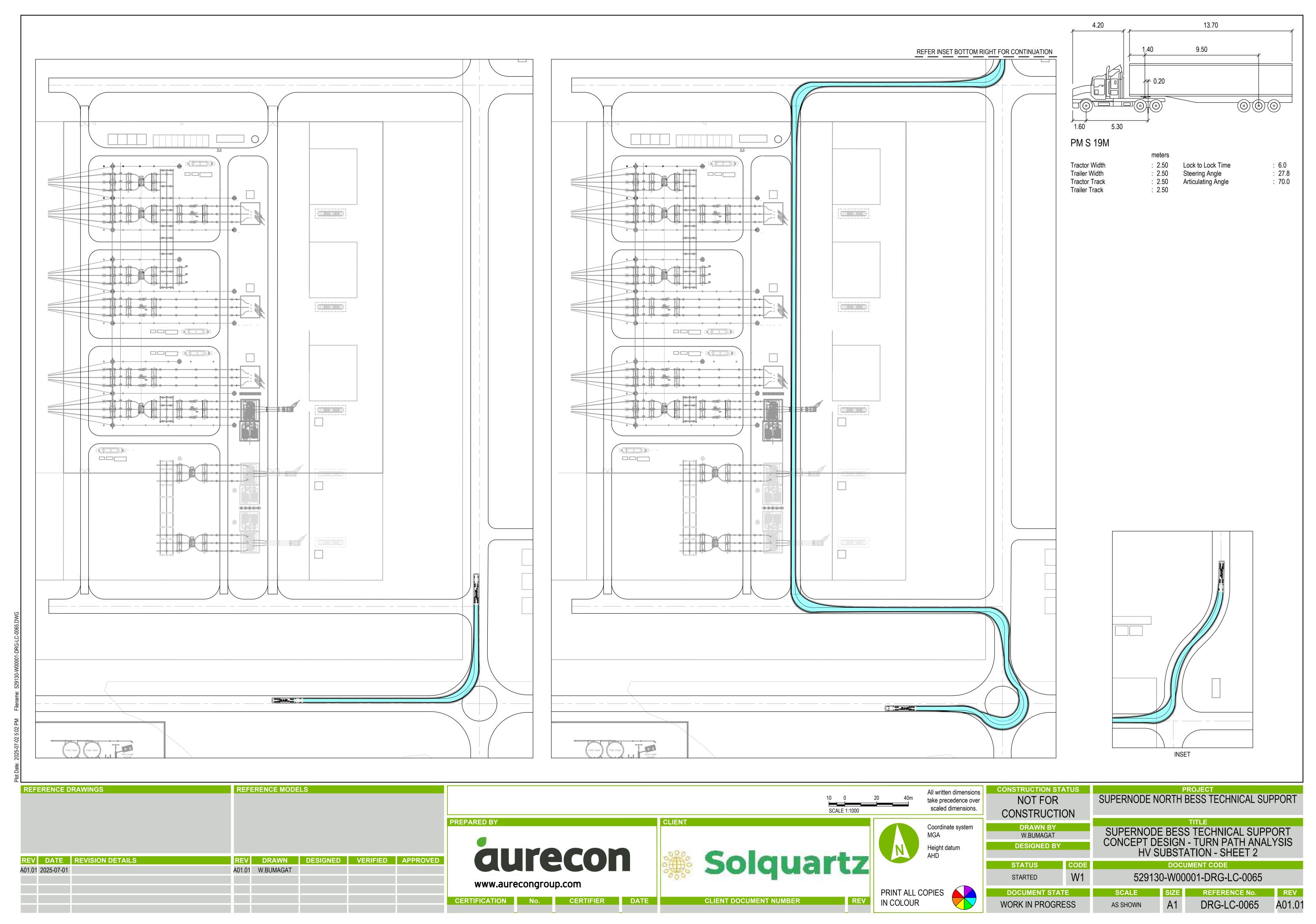
* Critical Movement (Signal Timing)

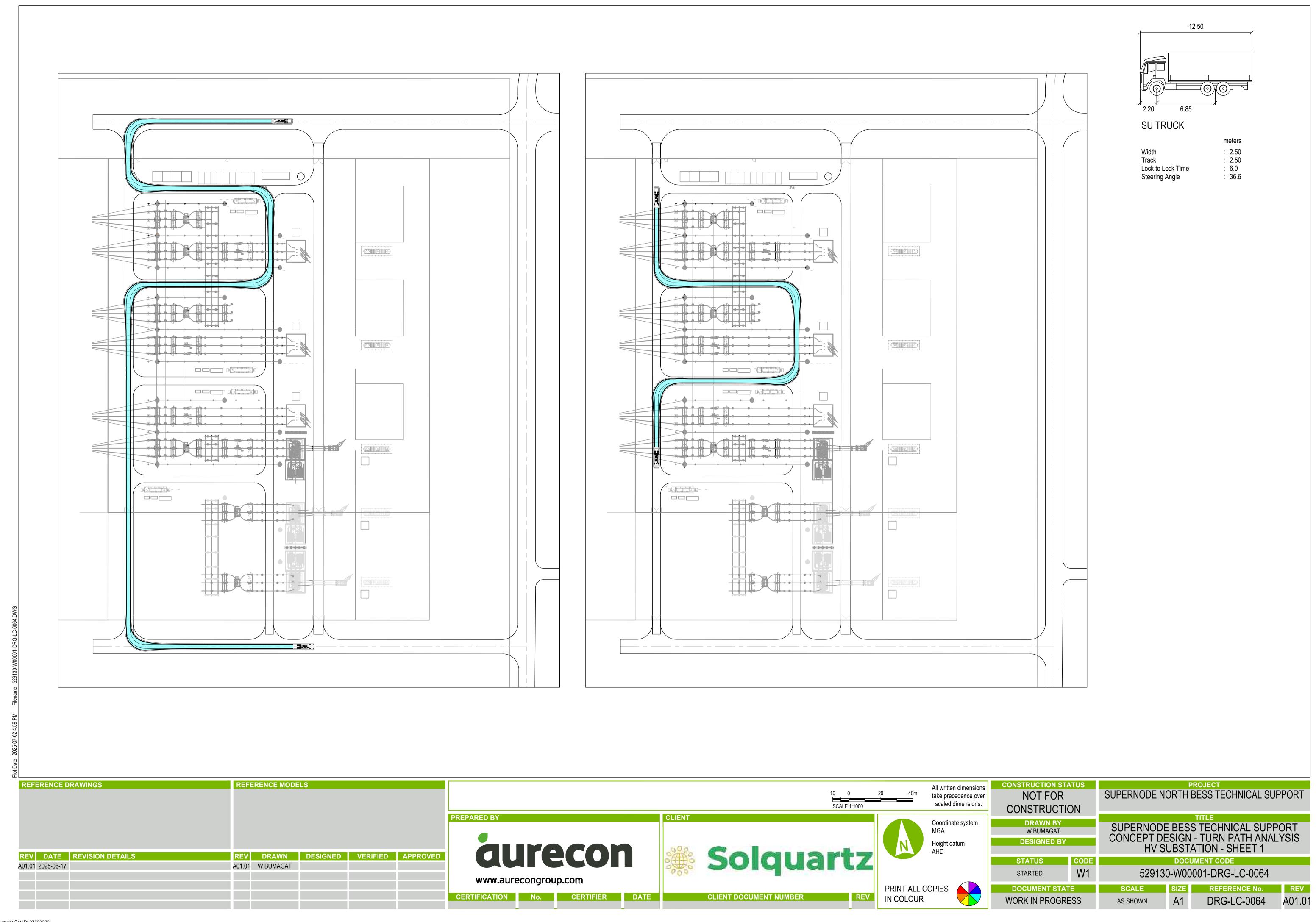
SIDRA INTERSECTION 10.0 | Copyright © 2000-2025 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: EMM CONSULTING | Licence: NETWORK / 1PC | Processed: Thursday, June 19, 2025 5:47:49 PM


Project: \tsclient\X\2025\E250401 - Project Green Poly MCU DAs\Technical studies\Transport\SIDRA\BESS\Level crossing\E250401_PGP


BESS Level Crossing v0.3 CC.sipx


Attachment F Swept path



Australia

SYDNEY

Level 10 201 Pacific Highway St Leonards NSW 2065 T 02 9493 9500

NEWCASTLE

Level 3 175 Scott Street Newcastle NSW 2300 T 02 4907 4800

BRISBANE

Level 1 87 Wickham Terrace Spring Hill QLD 4000 T 07 3648 1200

CANBERRA

Suite 2.04 Level 2 15 London Circuit Canberra City ACT 2601

ADELAIDE

Level 4 74 Pirie Street Adelaide SA 5000 T 08 8232 2253

MELBOURNE

Suite 9.01 Level 9 454 Collins Street Melbourne VIC 3000 T 03 9993 1900

PERTH

Suite 3.03 111 St Georges Terrace Perth WA 6000 T 08 6430 4800

Canada

TORONTO

2345 Yonge Street Suite 300 Toronto ON M4P 2E5 T 647 467 1605

VANCOUVER

2015 Main Street Vancouver BC V5T 3C2 T 604 999 8297

CALGARY

700 2nd Street SW Floor 19 Calgary AB T2P 2W2

linked in. com/company/emm-consulting-pty-limited

emmconsulting.com.au